Searching Protein 3-D Structures in Linear Time

Tetsuo Shibuya

Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
tshibuya@hgc. jp

Abstract. Finding similar structures from 3-D structure databases of
proteins is becoming more and more important issue in the post-genomic
molecular biology. To compare 3-D structures of two molecules, biologists
mostly use the RMSD (root mean square deviation) as the similarity
measure. We propose new theoretically and practically fast algorithms
for the fundamental problem of finding all the substructures of structures
in a structure database of chain molecules (such as proteins), whose
RMSDs to the query are within a given constant threshold. We first
propose a breakthrough linear-expected-time algorithm for the problem,
while the previous best-known time complexity was O(N logm), where
N is the database size and m is the query size. For the expected time
analysis, we propose to use the random-walk model (or the ideal chain
model) as the model of average protein structures. We furthermore pro-
pose a series of preprocessing algorithms that enable faster queries. We
checked the performance of our linear-expected-time algorithm through
computational experiments over the whole PDB database. According to
the experiments, our algorithm is 3.6 to 28 times faster than previously
known algorithms for ordinary queries. Moreover, the experimental re-
sults support the validity of our theoretical analyses.

1 Introduction

3-D structure database searching of molecules, especially proteins, plays a very
important role in molecular biology [2/8/T0]. For example, if we have proteins
whose structures are known but their functions are unknown, we may be able
to predict their functions by searching for similar structures whose functions are
known, as structurally similar proteins tend to have similar functions. Moreover,
more and more protein structures are solved today with the aid of state-of-the-
art technologies such as nuclear magnetic resonance (NMR) techniques, as seen
in the rapid growth of the PDB database [3]. Thus, faster searching techniques
are seriously needed for the molecular structure databases.

A protein is a chain of amino acids. Thus, its structure can be represented by
a sequence of 3-D coordinates, each of which corresponds to the position of a
specified atom (the C, atom is usually used) of each amino acid. Such molecules
are called chain molecules. There are also many other important chain molecules
in living cells, such as DNAs, RNAs and glycans. The RMSD (root mean square

S. Batzoglou (Ed.): RECOMB 2009, LNCS 5541, pp. 1{15,|2009.
© Springer-Verlag Berlin Heidelberg 2009

2 T. Shibuya

deviation) [IITIT2T3ITE/TY] is the fundamental measure to determine the geomet-
ric similarity between two same-length sequences of 3-D coordinates. It has been
widely used not only for molecular structure comparison, but also for various
problems in various fields, such as computer vision and robotics. It is defined as
the square root of the minimum value of the average squared distance between
each pair of corresponding atoms, over all the possible rotations and transla-
tions (see section 22]). In this paper, we consider one of the most fundamental
RMSD-related problems as follows.

Problem. Given a structure database D of chain molecules and a query struc-
ture Q, find all the substructures of the structures in D whose RMSDs to Q are
at most a given fixed threshold ¢, without considering any insertions or deletions.

In general, ¢ should be set to a fixed constant proportional to the distance
between two adjacent atoms of the chain molecules. In the case of proteins,
the distance between two adjacent C,, atoms is around 3.8A, while two protein
strucAtures are said to be similar to each other if their RMSD is smaller than 1
or 2A.

Our results. The best-known worst-case/expected time complexity of the prob-
lem was O(N logm) [16/19], where N is the database size (i.e., the sum of the
lengths of all the structures in the database) and m is the query size. We pro-
pose the first linear-expected-time (i.e., O(N)) algorithm. To analyze the ex-
pected time of the algorithm, we give an assumption that the structures in the
database follow a model called the random-walk model (see section [2Z4)). We also
propose several preprocessing algorithms that enable faster queries. We first pro-
pose an O(N log N)-time and O(N)-space preprocessing algorithm that enables
O(m+N//m)-expected-time query, for queries of a fixed length. We next extend
it to an O(N log® N)-time and O(N log N)-space preprocessing algorithm that
enables the same O(m + N/y/m)-expected-time query, for queries of arbitrary
lengths. We also propose an O(N log N)-time and O(N)-space preprocessing al-
gorithm that enables O(\}Vm + mlog(N/m))-expected-time query, for queries of
arbitrary lengths.

We also examine the performance of our algorithms by computational exper-
iments on the whole PDB database. Our linear-time algorithm is much faster
than any of previous algorithms, i.e., 3.6 to 28 times faster to search for sub-
structures whose RMSDs are at most 1A. Moreover, no inconsistency is observed
between the theoretical results and the experimental results, which means our
random-walk assumption is very reasonable for analyses of algorithms for protein
structure database search.

The organization of this paper. In section[2] we describe the basic definitions
and related previous work as preliminaries. In section 3], we propose an O(N+/m)
algorithm for the problem above, where N is the database size and m is the
length of the query. We next improve it to obtain the linear-time algorithm
in section @l In section B, we further extend our algorithms for faster queries
after preprocessing. In section [we examine the performance of our algorithms
against the PDB database. In section [, we conclude our results.

Searching Protein 3-D Structures in Linear Time 3

2 Preliminaries

2.1 Notations and Definitions

A chain molecule is represented like S = {s1,82,...,8,}, where s; denotes
the 3-D coordinates of the i-th atom. The length n of S is denoted by [S]|.
A structure S[i..j] = {si, Sit1,...,8;} (1 < i < j < n) is called a substruc-
ture of S. R - S denotes the structure S rotated by the rotation matrix R, i.e.,
R-S = {Rsy, Rsa,...,Rs,}. v! denotes the transpose of the vector v and AT
denotes the transpose of the matrix A. trace(A) denotes the trace of the matrix
A. |v] denotes the norm of the vector v. 0 denotes the zero vector. (x) denotes
the expected value of z. var(x) denotes the variance of x. Prob(X) denotes the
probability of X.

In the rest of this paper, we consider that the target database D consists
of one long structure P = {p;,po,...,pn}, and we let Q = {q1,q2,.-.,qm}
denote the query structure, where m is supposed to be smaller than N. Our
problem is to find all the positions ¢ such that the RMSD (see section for its
definition) between P[i..i+m—1] and Q is at most a given fixed threshold ¢. An
ordinary database may contain more than one structure, but the problem against
such databases can be reduced to the problem against databases with only one
structure, by concatenating all the database structures into one structure and
ignoring substructures that cross over the boundaries of concatenated structures.

2.2 RMSD: The Root Mean Square Deviation

The RMSD (root mean square deviation) [II7IT2/T3ITETI9] between two 3-D co-
ordinate sequences S = {s1, S2,..., 8, and T = {¢1,¢a,...,t,} is defined as the
minimum value of Eg (S, T) = \/711 S]1si — (R-t; +v)|? over all the possi-
ble rotation matrices R and translation vectors v. Let RM SD(S, T) denote the
minimum value, and let R(S,T) and (S, T) denote the rotation matrix and
the translation vector that minimizes Eg (S, T). RMSD(S,T), R(S,T) and
(S, T) can be computed in O(n) time as follows.

If the rotation matrix R is fixed, ERr (S, T) is known to be minimized when
the centroid (center of mass) of R - T is translated to the centroid of S by the
translation vector v, regardless of what the rotation matrix R is. It means that
9(S, T) can be computed in linear time if we are given R(S, T). Moreover, it also
means that the problem of computing the RMSD can be reduced to a problem
of finding R (i.e., R(S,T)) that minimizes Ej(S,T) = Y1, |s; — R- t;|?, by
translating both S and T so that both of their centroids are moved to the origin
of the coordinates, which can be done in linear time.

After translating both structures so that both of their centroids are moved
to the origin, we can compute R(S,T) in linear time as follows [1,12,13] Let
J =" st Clearly, J can be computed in O(n) time. Then E%(S, T) can

! Here, S and T are the translated structures which are different from the original S
and T in the original problem (that optimizes both rotation and translation).

4 T. Shibuya

be described as > (s;'s; + t;'t;) —2-trace(R-J), and trace(R-J) is maximized
when R = VUT, where UAV is the singular value decomposition (SVD) of J.
Thus R(S,T) can be obtained from J in constant time, as .J is a 3 x 3 matrix
and the SVD can be computed in O(d?) time for a d x d matrix [I1]. Note that
there are degenerate cases where det(VUT) = —1, which means that VU7 is a
reflection matrix. See [II7IT2] for the details of the degenerate cases. Finally, we
can compute the RMSD in linear time once we have obtained R(S,T). In total,
we can compute the RMSD in O(n) time.

2.3 Previous Best-Known Searching Algorithms

According to the previous section, we can compute the RMSD between any
substructure P[i..i + m — 1] and the query Q in O(m) time. Consequently, we
can solve our problem in O(Nm) time by checking the RMSDs between the
query and all the O(NN) substructures of length m in the database.

Schwartz and Sharir [I6] proposed a more sophisticated approach for the prob-
lem that solves it in O(N log N) time, based on the convolution technique using
the FFT (fast Fourier transform) [B]. Shibuya [19] also proposed a different algo-
rithm with the same time complexity, also based on the convolution technique.
These algorithms are not faster than the naive algorithm when N > m. But
this time bound can be easily improved to O(N logm) as follows. Break P into
O(N/m) substructures of length m + O(m) each of which overlaps with its ad-
jacent fragment with overlap length m — 1. Then our problem can be solved in
O(N logm) time by applying the above O(N log N)-time algorithm against each
fragment. The expected time complexity of these algorithms are all the same as
their worst-case time complexity, and no algorithm with better expected time
complexity is known. But note that the above FFT-based O(N logm)-time al-
gorithm is not practically faster than the naive O(Nm)-time algorithm in case
m is not large enough, and it is rarely used in practice.

For the problem, a linear-size indexing data structure called the geometric
suffix tree [I7JI8] is known to enable practically faster query than the above
algorithms. But its worst-case query time complexity is still O(Nm), while we
need O(N?) time to construct the data structure. In fact, there have been no
known indexing algorithms whose theoretical query time complexity is smaller
than the above O(NN logm) bound.

2.4 The Random-Walk Model for Chain Molecule Structures

The random-walk model for chain molecule structures is a simple but useful
model for analyzing their behavior [4J6JQIT5]. The model is also called the freely-
jointed chain model or the ideal chain model. In the model, we assume that the
structure of a chain molecule is constructed as a result of a random walk in 3-D
space. It is useful in various analyses in molecular physics, as it reflects properties
of structures of real chain molecules very well [4].

Consider a chain molecule S = {sg, 82, ..., 8y} of length n + 1, in which the
distance between two adjacent atoms is fixed to some constant ¢. Note that

Searching Protein 3-D Structures in Linear Time 5

the length between two adjacent C, atoms in a protein structure is constantly
3.8A, as mentioned in section [l In the random-walk model, a bond between
two adjacent atoms, i.e., b; = s;11 — s;, is considered as a random vector that
satisfies |b;| = ¢, and b, is independent from b; for any 7 and j (i # j). If n
is large enough, the distribution of the end-to-end vector s, — sg is known to
converge to the Gaussian distribution in 3-D space, in which (s, — sg) = 0
and (|s, — 8o|?) = n - £2. In the distribution, the probability (or probability
density) that s, — s is located at some position (z,y, z) is Wi, ¢(z,y, z)dzdydz =
(grpez) 230 V208 dpdy .z,

In our theoretical analysis in later sections, we will give an assumption that
the structures in the target database follow the random-walk model. Our exper-
imental results on the PDB database in section [l show high consistency with
our theoretical analyses based on the model.

3 An O(N+/m) Algorithm

In this section, we propose an algorithm that will be the basis for our algo-
rithms in later sections. The algorithm given in section achieves O(N+/m)
time under the random-walk assumption, by filtering out most of the dissimilar
substructures (i.e., substructures with RMSDs larger than the given threshold
¢) before computing the actual RMSDs, based on a measure described in sec-
tion 31 Tts time complexity will be analyzed in section

3.1 An Efficiently-Computable Lower Bound for the RMSD

We first propose a nontrivial, but easily-computable lower bound for the
RMSD between any two structures with the same length. Let U®ft de-
note {u1,us, ..., w2} and U9 denote {w|y 241, % k/2)42:-- -, Ua.[k/2 }
for a structure U = {uq,uq,...,ur}. Let G(U) denote the centroid (cen-
ter of mass) of the structure U, i.e., G(U) = 1125:1 u;. Let F'(U) denote
|G(U'/t) — G(U9h)| /2, which means the half of the distance between the cen-
troids of U'®f* and U9, For any two structures S and T with the same length
n, we define D(S,T) as |F(S) — F(T)| if n is an even integer. If n is an odd
integer, we define D(S,T) as \/”;1 |F(S) — F(T)|. From now on, we prove that
D(S,T) is a lower bound of the RMSD between S and T.

Let s, = s; —G(8S), and t;, = t; — G(T). In case n is an even integer, we prove
that D(S, T) is always smaller than or equal to RMSD(S,T), as follows:

1 & .
RMSD(S,T) = nZ\s;—R()-t]2 > Z|s t)|
i=1

n/2

\Z{S -)t} + \ Y {si—R(S,T) t}]

i:n/2+1

6 T. Shibuya

=|G(S'"'") = G(S) — R(S,T) - {G(T'*/") — G(T)}|/2

+|G(879") — G(S) — R(S,T) - {G(T™"") — G(T)}|/2
= |G(S'") — G(8"9") — R(S,T) - {G(T'/") — G(T"9"")}| /2
> [{|G(S"") — G(S™9")| — |G(T'/") — G(T™")[}] /2
= D(S,T). (1)

Note that we used the fact that G(S) = {G(S"/?) + G(S"9"*)} /2 and G(T) =
{G(T!t) + G(T"9"*)}/2 in the above.
In case n is an odd integer, we prove the same as follows:

RMSD(S,T) > \/” N Lrasps—, 1)

2\/nn1D(S_,T_):D(S,T), @)
where S~ denotes {s1, s2,...,8,-1}, and T~ denotes {t1,¢a,...,tn—1}.

If the above lower bound can be computed very efficiently, we may solve
our problem (presented in section [Il) more efficiently by filtering out hopelessly
dissimilar substructures before computing the actual RMSD value. In fact, we
can compute the above lower bound D(P[i..i + m — 1], Q) for all the positions
i in linear time, as follows. For any m, we can compute G(P[i..i + |m/2| — 1])
for all the positions ¢ such that 1 < i < N — [m/2] +1 in O(N) time, as
GPlii+ [m/2] =1] = G(Pli = L.i+ [m/2] = 2]) = |, by (Pie1 = i [m/2)—1)-
It means that F(P[i..i + m — 1], Q) and consequently D(P[i..i +m — 1], Q) can
be computed for all the positions ¢ such that 1 <i < N —m + 1, also in O(N)
time.

3.2 The Algorithm

Our basic algorithm is simple. It uses the above lower bound to filter out some
(hopefully most) of the substructures in the database before the time-consuming
RMSD computation, as follows.

Algorithm 1
1 Compute D; = D(P[i..i +m —1],Q)
for all 4 such that 1 <¢ < N —m + 1.
for (all i such that 1 <i < N —m+1) {
if (D; <) {
if (RMSD(Pli..i +m —1],Q) < c)
{ output(“P[i..i + m — 1] is similar to the query Q.”) }

N O U W N

Searching Protein 3-D Structures in Linear Time 7

The above algorithm is valid, i.e., it enumerates all the positions of the substruc-
tures whose RMSDs to the query are at most ¢, because D; = D(P[i..i+m—1], Q)
is always smaller than or equal to RMSD(PJi..i +m — 1], Q). Let the number of
times of the RMSD computation in line 4 be N'(< N). Then, the time complex-
ity of the above algorithm is O(N + N’'m), as the line 1 of the algorithm requires
only O(N) time according to the discussion in section [l In the next section,
we will prove that (N') is in O(N/+/m), if the structures in the database follow
the random-walk model.

3.3 Computational Time Analysis

Consider a structure S = {31, 82,. .., 82, } of length 2n that follows the random-
walk model. In this section, we let the distance between two adjacent atoms
(¢ in section [Z4) be 1 without loss of generality, i.e., we consider the distance
between two adjacent atoms as the unit of distance. Then s; can be represented
as s1 +Z;;11 b;, where b, is an independent random vector that satisfies |b;| = 1.
Let H(S) = G(S'**) — G(S"9""). Notice that F(S) = |H(S)/2|. Then the
following equation holds:

n i—1 2n i—1
;Z(slﬁ-Zb]‘)—; Z (81+ij)
1 j=1 j=1

= j= i=n+1

H(S)

2n—1

S 2 b) 3)

i=n+1

_{Z ; -b; +
i=1

Let b; denote " -b; if i < n and **~"-b; if i > n. Then H(S) can be described
as 22221 b.. Let z; denote the z coordinate of b; and 2, denote the z coordinate of
b.. It is easy to see that (z;) = 0 and var(z;) = 1/3, as b; is a random vector that

246
satisfies |b;| = 1. Let M,, = 322" (|2} — <Z£>|>2+5/\/21221 var(z}) ’ , where ¢ is
some positive constant. According to Lyapunov’s central limit theorem [I4], the
distribution of ZZQ" 2z} converges to the Gaussian distribution, if M,, converges
to 0 as n grows up to infinity for some ¢ such that § > 0. It can be proved as
follows:

2+6 2+46

2n 2n 2n 2n
My = (2D D002 <D (=D | D=2
i=1 i=1 i=1 i=1

2n n 2n—1
= O =, A Y i
pa i=1 i=n+1
:{§n+ 9171}75/2 — 0 (n— 00).[2mm)] (4)

Hence, we conclude that Z?n z} converges to the Gaussian distribution. It

also means that H(S) converges to the Gaussian distribution in 3-D space if n

8 T. Shibuya

grows up to infinity, as the same discussion can be done for the other two axes
(z and y). The variance of H(S) is:

var(H(8)) = ([H(S)I*) — (H(S)])* = (|H(S)[*)

n . 2n—1 .
7 2n —1
=(> b+ > “b;[?)
- n R n
=1 1=n—+1
iy QS @n—i?} = 2nt b o~ tmm] (5)
ot) T3 "3n " 37

as (b; - b;) = 0 if i # j. Moreover, it is easy to see that (H(S)) = 0. Thus
the distribution of H(S) is the same as the distribution of random walks of
length 2n/3. Hence the probability distribution of H(S) is Z,(z,y, z)dxdydz =
(47?”)36*9($2+92+Z2)/4”dmdydz. Consequently, the probability (or probability

density) that |H(S)| = 7 is Zu(r)dr = 4mr2(,°)2e9"/47dr. Integrating

Z,(r)dr, we obtain Prob(z < |H(S)| < y) = [’ Z.(r)dr. Z,(r) takes the
maximum value at rpq; = g\/n and Z,("maz) = 6e71/y/mn. Thus Prob(x <
|H(S)| < y) is at most (y —) - Zn(Tmaz) = 6~y — x)/y/7n for any x and y
(x <y).

Therefore, for any structure T such that |T| = |S| = 2n, the probability
Prob(|D(S,T)| < ¢) = Prob(F(T) —c < F(S) < F(T) +c¢) = Prob(2- F(T) —
2¢ < |H(S)| <2-F(T)+2c)) is at most 4 ¢+ Zp(Tmaz) = 24c-e~1/\/mn, which
is in O(1/4/n) as c is a fixed constant. Notice that there is no assumption on the
structure 7" in this analysis.

Consequently, as \/ mygl ~ 1, the probability Prob(D; < c¢) in the line 3 of
the algorithm in section B2is in O(1/4/m) if P follows the random-walk model,
no matter what the query structure Q is. It means that (N’) is in O(N/v/m).
Therefore, we conclude that the expected time complexity of the algorithm is
O(N + (N') -m) = O(Ny/m), under the assumption that the structures in
the database follow the random-walk model] Note that the worst-case time
complexity of the algorithm is still O(Nm) as N’ can be in O(N) at worst, but
it should be rare under the random-walk assumption.

4 The Linear-Time Algorithm

We next improve the algorithm 1 to obtain better expected time complexity.
From the definition of the RMSD, we can deduce that

RMSD(S,T) > [2mm]Vt - {(RMSD(S"/t, T/))2 1
(RMSD(Sright’Tright))2}1/2
>Vt {(D(SIFt, Tleft))2 4 (D(STight prisht))2)1/2, 6)

2 The same discussion can be done in case the query structures, instead of the database
structures, follow the random-walk model.

Searching Protein 3-D Structures in Linear Time 9

where t = |S'/t|/|S| = [S"%9"| /|S| ~ 1/2. Let D'*f*(S, T) = /t - D(S'/t, Tleft)
and DM (S, T) = /t - D(S™9" T79"). The expression () can also be used
as a lower bound of the RMSD for another valid filtering algorithm, as follows:

Algorithm 2

1 For all ¢ such that 1 <¢ < N —m + 1, compute

D} = {(D"*(P[i.i+m —1],Q))%* +

(DR (Pli.i +m — 1], Q))?} /2.

for (all i such that 1 <i < N —-m+1) {

if (D] < c) {

if (RMSDP[i..i+m—1],Q) <c¢)
{ output(“P[i..i + m — 1] is similar to the query Q.”) }
}

}

N O U W N

The only difference from the Algorithm 1 is the lower bound D} used in the line
1. Note that the time complexity of the line 1 is still O(NV).

If D! < cin line 3, both D'*/*(P[i..i+m—1],Q) and D" (P[i..i+m—1],Q)
must also be at most c. According to the discussion in section[3.3] the two proba-
bilities Prob(D'/*(P[i..i+m—1],Q) < ¢) and Prob(D"" (Pli..i+m—1],Q) <
¢) are independent and both in O(1/4/m), under the assumption that P fol-
lows the random-walk model. Thus, Prob(D; < ¢) in line 3 must be in
O((1/y/m)?) = O(1/m). Therefore the expected number of RMSD computa-
tions in line 4 should be in only O(N/m), and consequently the expected time
complexity spent in the lines 4-6 of the above algorithm is O(N). Thus, the total
expected time complexity of the algorithm 2 is O(N) under the random-walk
assumption. Note that the worst-case time complexity is still O(Nm), but it
should be very rare under the random-walk assumption.

5 Faster Queries after Preprocessing

5.1 Preprocessing for Queries of a Fixed Length

From now on, we further improve the query time complexity by allowing pre-
processing on the database structure P. First, we consider the case where
each query has the same length m. According to section Bl we can compute
F(Pli..i + w — 1]) for all ¢ in O(N) time for a fixed value of w. Let L,, be the
sorted list of ¢ according to the value of F(P[i..i + w — 1]), which can be ob-
tained in O(N log N) time. By doing a binary search on L,,, we can find all the
i such that x < F(P[i..i + w — 1]) < y in O(log N + occ) time for any x and v,
where occ is the number of the outputs. Hence, we can list all the 7 such that
D(S,P[i..i + w—1]) < ¢ in O(log N + occ) time for any structure S of length
w by utilizing L,,, where ¢ is some constant and occ is the number of outputs,
as F(S) —¢ < F(Pli.i+w—1]) < F(S) + cif D(S,P[i..i + w —1]) < ¢. Our
preprocessing algorithm in this section computes F(P[i..i +m’ —1]) for all ¢ and

10 T. Shibuya

sorts them to obtain L,,/, where m’ = |m/3], which can be done in O(N log N)
time in total.
Consider yet another lower bound for the RMSD, as followsf

, 3
D) = \/7:1 D DE@li+ (G- 1) ml i g em =1,

=
QL+ (j—1)-m.j-m])2}/2

’ 3
< \/:; A (BRMSD(P[i+ (j — 1) -m/ i+ j-m/ - 1],
j=1
QL+ (j—1)-m/.j-m])?}/?
< RMSD(Pli..i +m —1],Q). (7)
Notice that D(P[i + (j — 1) -m/i+j-m' —1,Q1 + (j — 1) -m/..j - m/]) <

c\/;;’, for any j, if D} < c. Let X; be the set of all positions i such that
DPli+(j—1)-m'i4+j-m =1,Q[l + (j —1)-m'.j-m]) < ¢/ (for
1 < j < 3). By using Ly, we can find all i € X; in O(log N + |X}|) time for
any of j = 1,2,3 after we have computed F(Q[1 + (j — 1) - m’..j - m’]). Note
that F(Q[1+ (j —1)-m/..j - m/]) for all of j = 1,2,3 can be computed in O(m)
time. Let X be the set of common integers of the three sets X;, Xo, and X3.
X can be obtained in expected O(|X1| + | X2| 4+ | X3|) time by using a hashing
technique. Notice that the positions ¢ such that RMSD(P[i..i+m —1],Q) < ¢
must be included in X. For substructures at the positions i € X, we finally
have to compute the RMSD to check whether the actual RMSD is at most ¢, if
D} < c. Tt can be done in at most O(m - | X|) time.

(| X,y is in O(N/y/m) under the assumption that P follows the random-walk
model. Moreover, as the structures P[i+(j—1)-m’..i+j-m’—1] with different j are
independent random walks, (|X|) is estimated as O(N/(y/m)3?) = O(N/m'?®).
Thus the total expected query time complexity utilizing L, is O(m+ N//m +
m - N/m!'® +log N) = O(m + N/y/m).

5.2 Preprocessing for Queries of Arbitrary Lengths

We next consider queries of arbitrary lengths. For such queries, consider com-
puting L., for all w such that w is a power of 2, i.e., representable as 2¢ for some
integer d. They can be obtained in O(N log® N) time, as the number of different
w is in O(log N). Let m’ be the largest power of 2 such that 3m’ < m. Then
the inequality (7)) also holds for this case. The only difference is that m/' is some
power of 2 that satisfies m/6 < m’ < m/3, while m’ = |m/3] in the previous
section. Thus, according to the same discussion as in the previous section, we
obtain the same query time complexity, i.e., O(m + N/ /m). A problem is that

3 We can consider another linear-expected time algorithm based on the Algorithms 1
and 2 by replacing D; or D} with D} . We will examine the performance of the algo-
rithm (denoted as A3 in section [G]) through computational experiments in section

Searching Protein 3-D Structures in Linear Time 11

the algorithm requires O(N log N) space to store all the L,,, which might be
undesired for huge databases.

5.3 Preprocessing with Linear Space for Queries of Arbitrary
Lengths

In this section, we propose another preprocessing algorithm that uses only O(N)
space for queries of arbitrary lengths. Consider dividing P into substructures of
length 2¢ for each d such that 1 < d < log, N. By doing so, we get substructures
Phd = Pl(k—1)-2¢+1..k-2% (1 <k < N/29) for each d. There are only O(N)
number of substructures denoted as P*?, even if we enumerate all the possible
k and d. G(P*1) (see section [3 for its definition) can be computed in constant
time for each k. Moreover, G(P*4) = {G(P?*~1d4-1) + G(P?*4~1)}/2. Thus,
we can compute G(P*?) for all the possible k and d such that 1 < k < N/2¢
and 1 < d <logy, N in O(N) time by dynamic programming. Consequently, all
of the F(P*) values can also be computed in O(N) time. For each d (1 < d <
logy N), let K4 be the sorted list of integers k (1 < k < N/2%) according to the
F(P*4) values. K4 can be computed in O((N log N)/2¢) time. Our preprocessing
algorithm in this section computes all these F'(P*4) and K for all the k and d,
which can be done in O(N log N) time in total.

By doing a binary search on K, we can find all the k such that z < F(P*?) <
y for any z, y, and d, in O(log(N/2%) + occ) time, where occ is the number of
the outputs. Hence, if we are given any structure S of length 2¢ and the value of
F(8S), we can list all the k such that D(S, P*?) < ¢ in O(log(N/2%) + occ) time,
as F(S) — ¢ < F(P*) < F(S) + ¢ iff D(S,P*?) < c. Let dq be the largest
d such that, for any i, there exists some k such that P*d PktLd gnd pkt2.d
are substructures of P[i..i + m — 1]. Explicitly, dq = |logy(m + 1)| — 2. Let
wq = [P*7| = 292 Notice that wq > m/8. Let I2 be a set of integers whose
remainder is p—1 when divided by wq (1 < p < wq), i.e., integers representable
as p+j - wq + 1 with some integer j.

Now consider comparing the query Q and substructures P[i..i + m — 1]
such that i € IQ. There are O(N/wq) = O(N/m) such substructures. Let
kq = [(i — 1)/wq] + 1. Then, P*e:de Pketlde and PFet2de are substruc-
tures of P[i..i + m — 1]. Let Pq,; = Pfeti~ldae for j = 1, 2, and 3. Let
Q; =Qp+(—1) - wqp+j wqg—1] for j = 1, 2, and 3, and let
Dy = 2\1&{Z;”?:I(D(PQM, Q,;))?}/2. Then, D is also a lower bound of
RMSD(P[i..i + m — 1], Q), as shown in the following inequality:

3
D < 2;2{2(1)(13@4,Qp,j))z}l/Q < RMSD(Pli.i+m—1],Q). (8)
j=1

Notice that D(Pq;, Qp,;) < 2v2c for any j, if D} < c. Given the value of
F(Qp,;), wecanlistalli € IQ such that D(Pqi,j, Qp,;) < 2v2cin O(log(N/m)+
occ) time for any j, by a binary search on the list K4, where occ is the number of
the ¢ to be listed. Let the list be Y; (j = 1,2, 3). Note that F/(Q, ;) for all j and p
(1 <j<3,1<p<wqg)canbe computed in O(m) time in total.

12 T. Shibuya

Then the same discussion as in section [5.1] can be done. According to the
discussions in section B3] (|Y;[) is in O((N/m)/v/m) = O(N/m'?®), under
the random-walk assumption on P. The set of the start positions i € 119
of similar (i.e., the corresponding RMSD is at most ¢) substructures must
be included in all of the three lists: Y7, Y5 and Y3. Thus, the next thing
to do is to choose the common positions from the three lists. By using a
hashing technique, it can be done in O(|Y1] + |Ya| + |Y3|) time, which is
O(N/m'®) under the random-walk assumption. Let Y denote the list of the
positions commonly listed in Y;, Y5> and Y3. As Pq.i1, Pq,i2 and Pq 3 are
independent random walks, (|Y|) is estimated to be in O((N/m)/(y/m)3) =
O(N/m??®). For substructures at the positions i € Y, we finally have to
compute the RMSD to check whether the actual RMSD is at most ¢, if
D} < c. It takes at most O(m - (|Y])) = O(N/m'®) expected time under
the random-walk assumption. Thus the total computational time to enumer-
ate all the positions ¢ of similar substructures such that ¢ € I;,Q is O(N/m!'5 +
log(N/m)).

To enumerate all the positions of similar structures, we execute the above
for all p (1 < p < wq). Thus the total expected query time complexity is
O(m+wq-(N/m!'5+log(N/m))) = O(N/y/m+mlog(N/m)) under the random-
walk assumption.

6 Computational Experiments on the PDB Database

We did computational experiments using the whole PDB database [3] of the
date September 5th, 2008. Note that more detailed results will be given in the
full version of this paper. The database contains 52,821 entries, which include
244,719 chains of proteins. The total number of amino acids of all the chains
is 38,267,694. We used the C, coordinates as the representative coordinates
of each amino acid. We did experiments of searching queries of 10 different
lengths. In each experiment, we selected 100 substructures of each specified
length randomly from the whole database, as sample queries. We used 1 CPU
of 1200MHz UltraSPARC III Cu on a SunFire 15K super computer for each
experiment.

Table [l shows the results. Each column shows the result of the queries of
each specified length. The ‘#Substructures’ row shows the number of sub-
structures of each specified length in the PDB database. The ‘#Hits’ row
shows the average number of hits, i.e., the average number of substructures
whose RMSDs to queries are at most 1A, among the results of the 100
random queries of each specified length. The ‘A1, ‘A2’, ‘A3’, ‘Naive’, and
‘FFT’ rows show the average computation time for the 5 algorithms: Al:
the O(Ny/m)-time algorithm proposed in section Bl A2: the linear-time algo-
rithm proposed in section M A3: another linear-time algorithm that uses the
lower bound D! proposed in section .1} Naive: the previously known stan-
dard O(Nm)-time algorithm, and FFT: the previously known O(N log N)-time
algorithm based on the FFT (introduced in section [Z3]). The algorithms Al,

Searching Protein 3-D Structures in Linear Time 13

Table 1. Experimental results over the PDB database for various-length queries

Query length 20 40 60 80 100
#Substructures 33,722,208 29,299,006 25,273,633 21,692,707 18,634,620
#Hits 15,093.64 38.07 27.36 32.90 28.61
A1 (sec) 119.87 98.94 98.94 92.43 85.80
A2 (sec) 117.39 58.86 44.01 36.41 36.25
A3 (sec) 151.52 74.56 33.63 25.54 20.46
Naive (sec) 423.52 447.01 450.39 442.13 428.06
FFT (sec) 551.94 531.92 505.52 463.01 425.77

Query length 120 140 160 180 200
#Substructures 16,134,096 14,084,515 12,362,509 10,884,548 9,559,056
#Hits 27.26 27.71 16.01 17.70 23.21
A1 (sec) 75.58 71.22 59.47 63.48 59.98
A2 (sec) 32.84 30.39 27.27 23.12 25.71
A3 (sec) 17.30 15.85 14.25 12.78 12.91
Naive (sec) 415.24 395.54 378.87 361.43 342.50
FFT (sec) 399.83 367.76 330.57 307.89 293.03

A2 and A3 are all the same algorithms, except for the lower bounds used in
them.

In the experiments, we achieved 3.6 to 28 times speed-up against any of the
previous algorithms for any-length queries, if we choose to use the lower bound
DY when the query is longer than 40, and choose D} otherwise. Moreover, the
experiments show that our linear-expected-time algorithms run actually in linear
time on the PDB database, i.e., the algorithm is not influenced by the difference
of query lengthSH It means our random-walk assumption is very reasonable for
analyses of protein structure databases.

7 Concluding Remarks

We proposed the first linear-expected-time algorithm for searching similar sub-
structures from structure databases, based on the RMSD measure. Moreover, we
proposed several preprocessing algorithms that enable theoretically even faster
queries. The performance of our algorithms is examined by computational ex-
periments on the whole PDB database.

As for the future work, it would be very interesting to apply our tech-
niques against protein alignment problems that consider insertions and deletions,
though it is known to be theoretically much more difficult. Another challenging
task would be to design a deterministically linear-time algorithm for our prob-
lem. It is also very interesting to extend our techniques against similar problems

4 Notice that the numbers of substructures of some specified length in the database
decreases as the length increases.

14

T. Shibuya

in higher dimensions. Moreover, our technique should be applicable to many
problems in other research fields such as robotics and computer vision.

Acknowledgement

The author would like to thank Jesper Jansson, Gregory Kucherov, and Ku-
nihiko Sadakane for invaluable discussions. This work was partially supported
by the Grant-in-Aid for Young Scientist (B) No. 20700264 from the Ministry of
Education, Culture, Sports, Science and Technology of Japan. The author used
the super computer system of the Human Genome Center, Institute of Medical
Science, University of Tokyo.

References

10.

11.

12.

13.

14.
15.

Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets.
IEEE Trans. Pattern Anal. Machine Intell. 9, 698-700 (1987)

Aung, Z., Tan, K.-L.: Rapid retrieval of protein structures from databases. Drug
Discovery Today 12, 732-739 (2007)

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucl. Acids Res. 28, 235—
242 (2000)

Boyd, R.H., Phillips, P.J.: The Science of Polymer Molecules: An Introduction Con-
cerning the Synthesis. In: Structure and Properties of the Individual Molecules
That Constitute Polymeric Materials. Cambridge University Press, Cambridge
(1996)

Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19, 297-301 (1965)

de Gennes, P.-G.: Scaling Concepts in Polymer Physics. Cornell University Press
(1979)

Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transforma-
tions: a comparison of four major algorithms. Machine Vision and Applications 9,
272-290 (1997)

Eidhammer, I., Jonassen, I., Taylor, W.R.: Structure comparison and structure
patterns. J. Comput. Biol. 7(5), 685-716 (2000)

Flory, P.J.: Statistical Mechanics of Chain Molecules. Interscience, New York (1969)
Gerstein, M.: Integrative database analysis in structural genomics. Nat. Struct.
Biol., 960-963 (2000)

Golub, G.H., Van Loan, C.F.: Matrix Computation, 3rd edn. John Hopkins Uni-
versity Press (1996)

Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta
Cryst. A32, 922-923 (1976)

Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of
vectors. Acta Cryst. A34, 827-828 (1978)

Kallenberg, O.: Foundations of Modern Probability. Springer, Heidelberg (1997)
Kramers, H.A.: The behavior of macromolecules in inhomogeneous flow. J. Chem.
Phys. 14(7), 415-424 (1946)

16.

17.

18.

19.

Searching Protein 3-D Structures in Linear Time 15

Schwartz, J.T., Sharir, M.: Identification of partially obscured objects in two and
three dimensions by matching noisy characteristic curves. Intl. J. of Robotics Res. 6,
29-44 (1987)

Shibuya, T.: Geometric suffix tree: a new index structure for protein 3-D structures.
In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 84-93.
Springer, Heidelberg (2006)

Shibuya, T.: Prefix-shuffled geometric suffix tree. In: Ziviani, N., Baeza-Yates, R.
(eds.) SPIRE 2007. LNCS, vol. 4726, pp. 300-309. Springer, Heidelberg (2007)
Shibuya, T.: Efficient substructure RMSD query algorithms. J. Comput.
Biol. 14(9), 1201-1207 (2007)

	Searching Protein 3-D Structures in Linear Time
	Introduction
	Preliminaries
	Notations and Definitions
	RMSD: The Root Mean Square Deviation
	Previous Best-Known Searching Algorithms
	The Random-Walk Model for Chain Molecule Structures

	An $O(N\sqrt{m})$ Algorithm
	An Efficiently-Computable Lower Bound for the RMSD
	The Algorithm
	Computational Time Analysis

	The Linear-Time Algorithm
	Faster Queries after Preprocessing
	Preprocessing for Queries of a Fixed Length
	Preprocessing for Queries of Arbitrary Lengths
	Preprocessing with Linear Space for Queries of Arbitrary Lengths

	Computational Experiments on the PDB Database
	Concluding Remarks
	References

