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Phenotype prediction from genotype data is one of the most important issues in computational 

genetics. In this work, we propose a new kernel (i.e., an SVM: Support Vector Machine) method for 

phenotype prediction from genotype data. In our method, we first infer multiple suboptimal 

haplotype candidates from each genotype by using the HMM (Hidden Markov Model), and the 

kernel matrix is computed based on the predicted haplotype candidates and their emission 

probabilities from the HMM. We validated the performance of our method through experiments on 

several datasets: One is an artificially constructed dataset via a program GeneArtisan, others are a 

real dataset of the NAT2 gene from the international HapMap project, and a real dataset of 

genotypes of diseased individuals. The experiments show that our method is superior to ordinary 

naive kernel methods (i.e., not based on haplotype prediction), especially in cases of strong LD 

(linkage disequilibrium) . 

       Keywords: genotypes; SVM; phasing; single-nucleotide polymorphism. 

1. Introduction 

Most variations of the DNA sequences in humans are at single-base sites, in which more 

than one nucleic acid can be observed across the population [5]. These sites (i.e. loci) are 

called SNPs (single nucleotide polymorphisms).  The sequence of pairs of DNA residues 

at each SNP site is called genotypes. The DNA residues which consist of genotypes are 

called alleles. There are two kinds of allele, major allele and minor allele. The major 

allele is an allele which is observed more frequently than another allele at the SNP site. 

The minor allele is less frequently observed than major allele at the SNP site. A sequence 

of contiguous alleles of SNPs on the same chromosome is called a haplotype. Most 

experimental techniques for determining SNPs do not provide haplotype information [4], 

[8]. The experiments generate only an unordered pair of allele readings for each site on 

the two chromosomes, i.e., a genotype. To obtain the haplotype data, we need to infer the 

haplotypes from genotype data. The process of inferring haplotypes from genotypes is 

called phasing or resolving.  

For the tailor-made medicine, the variations of the individuals’ phenotypes caused by 

the differences of DNA sequences become important and it is becoming important to 
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predict individuals’ phenotypes from genotypes. In this work, we developed new kernel 

methods to predict phenotype from genotype data, utilizing phased haplotype information. 

Then, we applied our methods to the disease status prediction and the prediction of the 

individual’s geographic background. Previous work for SVM-based disease status 

prediction is based on the number of the minor allele for each SNP site [2]. We focused 

on the phased haplotype and discussed whether the phased haplotype can improve the 

prediction accuracies.  

There are many software tools for haplotype inference: PHASE [20], [21], GERBIL 

[13], HAP [9] and HIT [19]. Among the tools listed above, HIT can provide not only the 

optimal haplotype but multiple candidates of haplotypes. Based on the multiple 

candidates of haplotypes obtained by HIT, we propose new kernel methods. 

In the last part of the paper, we demonstrate the effectiveness of these methods 

through experiments on several datasets, i.e., two kinds of real genotype datasets and an 

artificial dataset. 

2. Methods 

2.1.    Preliminaries 

In this section, we describe the notations and 2 methods, i.e., Haplotype Inference 

Technique (HIT) [19] and haplotype similarity measure, which are the basis of our 

methods. 

Notations 

Consider n  genotypes over m  SNP loci from the same chromosome. These loci are 

numbered 1,⋯ , m from left to right in the physical order. In most cases, only two 

alternative bases (i.e. alleles) occur at a SNP site. The allele for the SNP locus is an 

element of the set A = {1,0} where 1 and 0 refer to the most frequent allele and others at 

each SNP locus respectively. Sometimes the data contains missing values, and we 

represent them by ‘?’. Then a haplotype is a sequence in Am  (e.g. 1010111100). A 

genotype is a sequence of unphased (i.e., unordered) allele pairs and is defined as a 

sequence in A′m , where A′ = A × A  (e.g. 00 00 00 11 01 11 0?  00 00 11 ). Thus a 

genotype data consists of 2n × m values. Given a set of genotypes, the phasing problem 

is to find their corresponding most probable haplotype pairs (i.e. diplotypes) that could 

have generated the genotypes. 

Haplotype Inference Technique (HIT) 

HIT is an algorithm that uses HMM (Hidden Markov Model) [17], [18] to estimate 

haplotypes from genotypes. It shows relatively high accuracy among other software 

programs [19]. From now on, we describe how HIT infers haplotypes from genotypes. In 

HIT, we assume that all sites are bi-allelic.  

The model parameters, i.e., transition probabilities and emission probabilities, are 

estimated by the EM algorithm, using only the input genotype dataset. This means the 
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HIT does not need any training dataset. The number of founders K is a parameter we need 

to set before the HMM is trained. In Rastas et al. [19], they say that the HIT gives good 

results if K is set to any value larger than 4. They themselves use the setting K = 7 in 

their experiments against the Daly et al.'s data [6]. So we also set K  to 7  in our 

experiments in section 3. Once the model has been trained, we can estimate haplotypes 

from genotypes. Moreover we can obtain multiple haplotype candidates with emission 

probabilities that the HMM emits the haplotype.  

Haplotype similarity measure 

We use the hamming distance as a similarity measure between haplotypes. For a 

haplotype h ∈ Am , let h(k) denote the allele at locus k of the haplotype h. The similarity 

measure  between two haplotypes h and h′  is defined as: 

s h, h' =  I  h k ,h' k                                                   (1)  

m

k=1

 

where I a, b = 0 if alleles a and b are the same and I a, b = 1 otherwise. Tzeng et al. 

[22] and Li and Jiang [14] also use this hamming distance or its variant as the similarity 

measure between haplotypes.  

To obtain length-independent measure, we consider the following value d(h, h′) as 

the similarity between haplotypes h and h′ : 

d h, h′ =
s h, h′ 

m
 .                                                       (2) 

This measure may not be always best for all evolutionary or practical scenarios. It should 

be noted that our methods described in section 2.2 can use any other similarity measures 

between haplotypes, though there are not known any standard measures other than the 

measure described above. 

2.2.    Our method 

In this section, we first introduce genotype-genotype distance defined in our another 

work [15] for computing kernels between genotypes (Section 2.2.1). Based on the kernels, 

we next describe how we predict phenotypes from genotype data in Section 2.2.2. 

2.2.1. Genotype distance 

To develop new kernels, we need somewhat distance between genotypes. We introduce 

genotype-genotype distance, haplotype frequency-based distance (HFD), proposed in 

[15]. 

Before defining the genotype-genotype distance, we define a distance between 

haplotype pairs based on the haplotype distance described in Section 2.1. Let a =

(h1 , h2)  and a′ = (h1
′ , h2

′)  be two haplotype pairs to be compared, where 

h1 , h2 , h′
1 , h′

2 ∈ Am . We define the distance between haplotype pairs a and a′  as: 
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H(a, a′) = min  d h1 , h1
′ + d h2 , h2

′ , d h1 , h2
′ + d h2 , h1

′  .           (3) 

 

Using this distance, we propose the following genotype-genotype distance.  

Haplotype frequency-based distance (HFD) 

For genotypes g, g ′ ∈ A′ m
, let ci = (hi1 , hi2)  1 ≤ i ≤ 𝑀  and cj

′ =  hj1
′ , hj2

′  (1 ≤ j ≤

𝑀′) be candidate haplotype pairs for g and g ′  respectively, which are computed by HIT. 

Note that these candidate sets are not all the set of possible candidates, as there are 

usually an exponential number of candidates when we infer haplotypes from genotypes. 

The M  and M′  are user-specified upperbounds of the numbers of candidates to be 

enumerated by the HIT. In the experiments in Section 4, we let M = M′ = 100.  

Let pi ,  pj
′  be the emission probabilities of the candidate haplotype pairs, ci and cj

′ . 

The emission probabilities are considered as the haplotype frequencies. The haplotype 

frequency-based distance (HFD) between genotypes is defined as the following 

summation: 

 

HFD g, g ′ =   H ci , cj
′ ∙ qi ∙ qj

′

𝑀

i=1

𝑀 ′

j=1

                                  (4) 

 

where qi = pi  pk
𝑀
k=1 and qj

′ = pj
′  pk

′𝑀 ′

k=1 . qi  and qj
′  are the normalized emission 

probabilities of the candidate haplotype pairs, ci and cj
′ , respectively. 

 

2.2.2. Our learning algorithm 

We propose a learning algorithm for phenotype prediction from genotypes which consists 

of 3 steps. The learning algorithm needs a training dataset and a test dataset. We train our 

learning algorithm with the training dataset and test the leaning algorithm with the test 

dataset. The details of each step are described as follows.  

 

Step1. Haplotype Inference 

For each of the given training set and test set of genotypes, we extract candidates of 

haplotype pairs and their corresponding emission probabilities by using HIT. In the 

experiments in section 3, we let the number of the founders for the HMM be 7, which is 

the same as the setting in the experiments in Rastas et al. [19]. 

 

Step2. Computation of the kernels 

Using the result of the step 1, we evaluate HFD against all the pairs of genotypes of the 

training set and the test set. The details of HFD are described in the previous section 2.2.1. 

Based on the HFD, we compute the kernels in the 2 ways. One is e−HFD (g,g′ )  for 

genotypes g and  g ′ , which we call exponential HFD and another is 1 − HFD(g, g ′) for 
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genotypes g and  g ′ , which we call linear HFD.  In most cases, our kernels are positive-

semi definite. If  the kernels are not the positive-semi definite, we do as the follows.  

Let K be the kernel matrix. K can be written as K = PMP−1, where M is a triangular 

matrix and its diagonal elements are the eigenvalues of K, and P is an orthogonal matrix. 

We replace the negative diagonal elements of M by zero and let it be M′ . Let K′ =

PM′P−1. We use this K′ as the kernel matrix.  

 

Step3. Phenotype Prediction by SVM 

We predict the phenotypes from the test set of genotype data with SVM [24] based on the 

kernels computed in the step 2 of our learning algorithm. 

3. Data sets 

3.1.    The NAT2 dataset 

In the next section, we do experiments against a set of NAT2 gene-related genotypes [3] 

taken from the HapMap datasets of the version on March 1, 2007 [11].  The data consists 

of 270 genotypes with 24 SNP sites. The 270 genotypes can be divided into 3 ethnic 

groups (i.e. populations). The first group consists of genotypes of 90 Utah residents with 

ancestry from northern and western Europe (CEU), the second group consists of 

genotypes of 45  unrelated individuals of Han Chinese in Beijing and 45  unrelated 

individuals of Tokyo, Japan (CHB+JPT), and the last group consists of genotypes of 90 

Yoruba people in Ibadan Nigeria, West Africa (YRI).  

The NAT2 gene are said to be related to the susceptibility to some toxicities and 

cancers [7], [10]. Thus it is very important to study the differences of the NAT 2 genes 

among different populations to elucidate the ethnic difference in such susceptibilities.  

3.2. Disease datasets  

Dataset of Crohn’s disease [6] is derived from the 616 kb region of human Chromosome 

5q31 that may contain a genetic variant responsible for Crohn’s disease by genotyping 

103 SNPs for 129 trios. All offspring belong to the case population, while almost all 

parents belong to the control population. In entire data, there are 144 case and 243 control 

individuals.  

Dataset of autoimmune disorder [23] is sequenced from 330kb of human DNA 

containing gene CD28, CTLA4 and ICOS. These genes are proved related to autoimmune 

disorder. A total of 108 SNPs were genotyped in 384 cases of autoimmune disorder and 

652 controls.  

 

3.3. Simulated dataset  

We also applied our algorithms to an artificial genotype dataset to examine the 

performance of our methods. The data is generated by GeneArtisan [25] based on the 
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Figure 1.  LD plots of NAT2 gene from HapMap by Haploview [1].  The black color and gray color show 

the high LD score, and the white  color shows  the lower LD score. 

Coalescent model. The region includes one SNP site related to a genetic risk factor for 

diseases. 

We made training datasets of 1000 genotypes, where 500 are affected (i.e. case) 

genotypes and 500 are normal (i.e. control) genotypes, using the above tool.  

4. Results and Discussions 

In the following sections, we show the results of  the 3-fold cross-validations. 

Throughout the prediction validations, we compare our methods with other methods, i.e. 

Brinza’ method [2], SVM-fisher [12] and the method based on the number of the major 

allele. SVM-Fisher is a HMM based method. We used the same HMM in the step 1 of 

our algorithm for SVM-Fisher. The method based on the number of the major allele 

counts the number of the major allele at each SNP site and makes the feature vector of 

each individual’s genotype.  

4.1. Results on high LD datasets  

 Our HFD based methods show high accuracy on YRI and CEU datasets from HapMap 

datasets (Table 1, Table 2). We found that the datasets which our methods show high 

accuracies have high Linkage Disequilibrium (LD) (Figure 1). The LD measure a co-

segregation between the SNP sites. It is estimated that the haplotypes of high LD datasets 

can be inferred more precisely than low LD datasets (i.e. CHB+JPT dataset) and our HFD 

based methods show high accuracies than the other methods. Our methods also show 

high accuracy on the simulated datasets. The simulated datasets were generated by the 

tool incorporating that the human genome consists of haplotype blocks [16]. The regions 

in the haplotype blocks show high LD. It is estimated that the simulated datasets tend to 

show the haplotype structure more clearly and the haplotypes can be inferred precisely 

than real datasets and accuracy of our HFD based method are the higher than any other 

methods. And the accuracy is the higher value than the other real datasets (Table 3). 
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Table 1. Results of 3-fold cross-validation for CEU dataset. 

 

Method Sensitivity Specificity Accuracy 

Exp HFD 0.822 0.828 0.832 

Linear HFD 0.822 0.811 0.815 

Major allele 0.811 0.800 0.804 

SVM-Fisher 0.678 0.728 0.711 

Brinza’s method 0.733 0.755 0.748 

 

Table 2. Results of 3-fold cross-validation for YRI dataset . 

 

Method Sensitivity Specificity Accuracy 

Exp HFD 0.722 0.939 0.867 
Linear HFD 0.722 0.939 0.867 

Major allele 0.733 0.911 0.863 

SVM-Fisher 0.489 0.861 0.737 

Brinza’s method 0.667 0.856 0.793 

 

 

Table 3. Results of 3-fold cross-validation for simulated dataset. 

 

Method Sensitivity Specificity Accuracy 

Linear HFD 0.960 1.000 0.980 

Major allele 0.970 0.920 0.945 

SVM-Fisher 0.980 0.620 0.800 

4.2. Results on low LD datasets  

 As described in section 4.1, CHB+JPT dataset from HapMap shows lower LD than the 

other HapMap datasets, which we estimated is the reason why our HFD based methods 

don’t show higher accuracies than the other methods (Table 4). Our HFD based methods 

also don’t show high accuracies on the disease datasets (Table 5, Table 6). The gene 

related to the disease datasets are ranged in longer regions. The datasets are truncated by 

three haplotype blocks and the regions contain much lower LD [23], which we estimated 

is the reason why our HFD based methods don’t show high accuracies. 

 

Table 4. Results of 3-fold cross-validation for CHB+JPT dataset. 

 

Method Sensitivity Specificity Accuracy 

Exp HFD 0.911 0.800 0.832 

Linear HFD 0.911 0.783 0.826 

Major allele 0.922 0.744 0.804 

SVM-Fisher 0.767 0.728 0.778 

Brinza’s method 0.911 0.800 0.837 

 



        New Kernel Methods for Phenotype Prediction     139 

Table 5. Results of 3-fold cross-validation for Crohn’ s disease dataset. 

 

Method Sensitivity Specificity Accuracy 

Exp HFD 0.468 0.603 0.543 

Linear HFD 0.561 0.536 0.545 

Major allele 0.574 0.456 0.496 

SVM-Fisher 0.668 0.352 0.447 

Brinza’s method 0.388 0.575 0.501 

 

Table 6. Results of 3-fold cross-validation for dataset of Autoimmune disorder. 

 

Method Sensitivity Specificity Accuracy 

Exp HFD 0.530 0.521 0.525 
Linear HFD 0.451 0.692 0.603 

Major allele 0.425 0.684 0.587 

SVM-Fisher 0.493 0.524 0.515 

Brinza’s method 0.601 0.570 0.580 

 

5. Results and Discussions 

We proposed kernel methods based on the support vector machine. We succeeded in 

accurate  phenotype prediction especially for the high LD datasets, i.e. CEU and YRI 

dataset of NAT2 gene and simulated dataset.  On the other hand, our results were not so 

good  for the low LD datasets, i.e. JPT+CHB dataset of NAT2 gene and disease datasets. 

As our kernels are based on phased haplotypes, we concluded that our prediction 

accuracies depend on the degree of the LD of the datasets. We can infer the haplotype 

more precisely for the high LD datasets than low LD datasets in the step 1 in our methods. 

The prediction accuracy of haplotype inference influences the prediction accuracy of the 

SVM.  

            In this work, we only treated the disease status prediction. We will extend our 

models to take into account whether the individuals have the potential of the disease or 

not.  We will also try to take into account the variations of the haplotype blocks to 

consider more biological aspects into our models.  
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