
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999
1

PAPER

Constructing the Suffix Tree of a Tree

with a Large Alphabet

Tetsuo SHIBUYA†,

SUMMARY The problem of constructing the suffix tree of a
tree is a generalization of the problem of constructing the suffix
tree of a string. It has many applications, such as in minimiz-
ing the size of sequential transducers and in tree pattern match-
ing. The best-known algorithm for this problem is Breslauer’s
O(n log |Σ|) time algorithm where n is the size of the CS-tree
and |Σ| is the alphabet size, which requires O(n log n) time if
|Σ| is large. We improve this bound by giving an optimal linear
time algorithm for integer alphabets. We also describe a new
data structure, the Bsuffix tree, which enables efficient query for
patterns of completely balanced k-ary trees from a k-ary tree or
forest. We also propose an optimal O(n) algorithm for construct-
ing the Bsuffix tree for integer alphabets.
key words: algorithm, suffix tree, common suffix tree, integer

alphabet, tree pattern matching

1. Introduction

The suffix tree of a string S ∈ Σn is the compacted trie
of all the suffixes of S$ ($ /∈ Σ). This is a very fun-
damental and useful structure in combinatorial pattern
matching. Weiner [18] introduced this structure and
showed that it can be computed in O(n|Σ|) time, where
|Σ| is the alphabet size. Since then, much work has been
done on simplifying algorithms and improving bounds
[5], [15], [17], with algorithms achieving an O(n log |Σ|)
computing time (see also [11] for details). Recently,
Farach [8] proposed a new algorithm that achieved a
linear time (independent from the alphabet size) for
integer alphabets.

A common suffix tree, or a CS-tree for short, is a
data structure that represents a set of strings. This
is also an important problem that appears in tasks
such as minimizing sequential transducers of determin-
istic finite automata [4] and tree pattern matching [14].
Kosaraju [14] mentioned that the generalized suffix tree
of all the suffixes of a set of strings represented by a
CS-tree can be constructed in O(n log n) time where n
is the size of the CS-tree. Breslauer [4] improved this
bound by giving an O(n log |Σ|) algorithm. Note that
both of the algorithms were based on Weiner’s suffix
tree construction algorithm [18]. But this algorithm
becomes O(n log n) when Σ is large. In this paper, we
improve their bound by giving an optimal O(n) algo-
rithm for integer alphabets.

We also deal with a new data structure called a

Manuscript received August 21, 2002.
Manuscript revised October 15, 2002.

†The author is with IBM Tokyo Research Laboratory.

Bsuffix tree, which is a generalization of the suffix tree
of a string. Using the suffix tree of a CS-tree, we can
find a given path in a tree very efficiently. The Bsuffix
tree is a data structure that enables us to query any
given completely balanced k-ary tree pattern from a k-
ary tree or forest very efficiently. Note that the concept
of a Bsuffix tree is very similar to that of an Lsuffix tree
[1], [10], [13], which enables us to query any square sub-
matrix of a square matrix efficiently. We will show that
this data structure can be built in O(n) time for integer
alphabets. Bsuffix trees have many useful features in
common with ordinary suffix trees. For example, using
this data structure, we can find a pattern (a completely
balanced k-ary tree) in a text k-ary tree in O(m log m)
time, where m is the size of the pattern. Moreover,
we can enumerate common completely balanced k-ary
subtrees in a linear time. Considering that general tree
pattern matching requires an O(n log3 n) time [6], these
results mean that a Bsuffix tree is a very useful data
structure.

The extended abstract of this paper has appeared
in [16]. Note that we improved the computation time
bound for constructing the suffix tree of a tree, which
was O(n log log n) in the abstract.

2. Preliminaries

2.1 The Suffix Tree

The suffix tree of a string S ∈ Σn is the compacted trie
of all the suffixes of S$ ($ /∈ Σ). The tree has n + 1
leaves and each internal node has more than one child.
Each edge is labeled with a non-empty substring of S$
and no two edges out of a node can have labels which
start with the same character. Each node is labeled
with the concatenated string of edge labels on the path
from the root to the node, and each leaf has a label
that is a different suffix of S$. Because each edge label
is represented by the first and the last indices of the
corresponding substring in S$, the data structure can
be stored in O(n) space. In this paper, we deal with
only the suffix trees in which the edges going out from
a node are sorted according to their labels. Notice that
this property is very convenient for querying substrings.

For this powerful and useful data structure, we
have the following theorems:

Theorem 1 (Farach [8]): The suffix tree of a string

2
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999

$31415 9 265 3 5 8
S1S2 S3S4 S5S6 S7 $31415 9 265 3 5 8
S1S2 S3S4 S5S6 S7

Fig. 1 CS-tree of the strings S1=‘1413$’, S2=‘5413$’,
S3=‘913$’, S4=‘56213$’, S5=‘3213$’, S6=‘5213$’, and S7=‘83$’

S ∈ {1, . . . , n}n can be constructed in O(n) time.

Note that alphabet {1, . . . , n} is called an integer al-
phabet. In this paper, we will deal with only integer
alphabets. Farach’s suffix tree construction algorithm
and our algorithms to be presented use the following
theorem:

Theorem 2 (Harel and Tarjan [12]): For any tree
with n nodes, we can find the lowest common ances-
tor of any two nodes in a constant time after O(n)
preprocessing if the following values can be obtained
in a constant time: bitwise AND, OR, and XOR of two
binary numbers, and the positions of the leftmost and
rightmost 1-bit in a binary number.

This theorem indicates that the longest common pre-
fix (LCP) of any two suffixes can be obtained from the
suffix tree in a constant time after linear-time prepro-
cessing.

2.2 The Suffix Tree of a Tree

A set of strings {S1, . . . , Sk}, such that no string is a
suffix of another, can be represented by a common suffix
tree (CS-tree for short), which is defined as follows:

Definition 1 (CS-tree): In the CS-tree of a set of
strings {S1, . . . , Sk}, each edge is labeled with a single
character, and each node is labeled with the concate-
nated string of edge labels on the path from the node
to the root. In the tree, no two edges out of a node
can have the same label. Furthermore, the tree has k
leaves, each of which has a different label that is one of
the strings, Si.

Figure 1 shows an example of a CS-tree. The num-
ber of nodes in the CS-tree is equal to the number of
different suffixes of strings. Thus, the size of a CS-tree
is not larger than the sum of the lengths of the strings
represented by the CS-tree. Note that the CS-tree can
be constructed easily from strings in a time linear to
the sum of the lengths of the strings.

The generalized suffix tree of a set of strings
{S1, . . . , Sk} is the compacted trie of all the suffixes
of all the strings in the set. As mentioned in [14], the
suffix tree of a CS-tree is the same as the generalized
suffix tree of the strings represented by the CS-tree.
Furthermore, the size of the generalized suffix tree is

linear to that of the CS-tree, because the number of
leaves of the suffix tree is equal to the number of edges
in the CS-tree. Note that the edge labels of the suffix
tree of a CS-tree corresponds to a path in the CS-tree,
and they can be represented by the pointers to the first
edge (nearest to the leaves) and the path length.

Let ni be the length of Si, and let N =
∑

i ni.
Let n be the number of nodes in the CS-tree of the
strings. The generalized suffix tree can be obtained
in O(N) time in the case of integer alphabets (i.e.,
Si ∈ {1, . . . , n}ni) as follows. First, we construct the
suffix tree of a concatenated string of S1$S2$ · · · $Sk us-
ing Farach’s suffix tree construction algorithm. Then,
we obtain the generalized suffix tree by cutting away
the unwanted edges and nodes. But N is sometimes
much larger than the size n of the CS-tree: for example,
there exists a tree for which N is Θ(n2). This means
that the O(N)-time suffix tree construction algorithm
given above is not at all a linear time algorithm. The
best-known O(n log |Σ|) algorithm [4] for this problem
is based on Weiner’s suffix tree construction algorithm
[18]. We will improve it by giving a new algorithm
based on Farach’s linear-time suffix tree construction
algorithm.

3. New Algorithm for Constructing the Suffix

Tree of a CS-Tree

3.1 Algorithm Outline

Our approach to constructing the suffix tree of a CS-
tree is based on Farach’s suffix tree construction algo-
rithm [8]. Farach’s algorithm has three steps. First, it
constructs a tree called an odd tree recursively. Next,
it constructs another tree called an even tree by using
the odd tree. Finally it constructs the suffix tree by
merging these two trees. Note that the odd tree is a
trie of suffixes S[2i− 1] . . . S[n]$, and the even tree is a
trie of suffixes S[2i] . . . S[n]$. This algorithm achieves
an O(n) computation time for integer alphabets.

We later also define the odd and even trees for the
suffix tree of a CS-tree, and our algorithm also has three

construct suffix tree(CS-tree U)
{

if (U consists of only 0 or 1 node) {
The suffix tree T of U is obvious;
return(T);

}
Construct a tree U ′ (|U ′| ≤ |U |/2);
TU′ = construct suffix tree(U ′);
Construct a partial suffix tree Tsmall using TU′ ;
Construct a partial suffix tree Tlarge using Tsmall;
Merge Tsmall and Tlarge to construct T ;
return(T);

}

Fig. 2 Algorithm outline for constructing the suffix tree of a
CS-tree.

SHIBUYA: CONSTRUCTING THE SUFFIX TREE OF A TREE WITH A LARGE ALPHABET
3

following similar steps. First we build the odd tree or
the even tree recursively, then we construct the even
or odd tree by using the odd or even tree, respectively,
and finally we merge them to construct the suffix tree.
Figure 2 shows the algorithm outline in a pseudo-code.

In our algorithm, we use the following theorem by
Dietz and several others [2], [3], [7]:

Theorem 3: In any tree with n nodes, for any node
v in the tree and any integer d > 0 that is smaller than
the depth of v, we can find the ancestor of v whose
depth is d in constant time after O(n) preprocessing.

Let us now define several notations. Let
{S1, . . . , Sk} be the strings represented by a given
CS-tree. Let ni be the length of Si and let Si =
Si[ni] . . . Si[1]. Note that the indices are arranged in
reverse order. Above theorem 3 indicates that, for
any i and j, we can access Si[j] in constant time
after O(n) preprocessing. Let Si(m) be Si’s suffix
of length m, i.e., Si[m] . . . Si[1]. Let lcp(S, S′) and
lcs(S, S′) be the lengths of the longest common pre-
fix and suffix of strings S and S′, respectively. Let
parentU (v) be the parent node of v in the CS-tree U
if v is not the root node t; otherwise, let it be t: i.e.,
parentU (vi,j) = vi,max(0,j−1), where vi,j denotes the an-
cestor of vi whose depth is j. Let label(e) be the label
given to edge e in the CS-tree. Let TU be the suffix tree
of the CS-tree U .

3.2 Building a Half of the Suffix Tree Recursively

All nodes in the CS-tree U = (V, E) have either odd or
even label length. Let Vodd and Veven be the nodes with
odd label lengths and those with even label lengths,
respectively. If |Vodd| ≥ |Veven|, let Vsmall = Veven

and Vlarge = Vodd; otherwise, let Vsmall = Vodd and
Vlarge = Veven. We can obtain |Vodd| and |Veven| in
O(n) time by the ordinary depth-first search on the
CS-tree. Therefore, we can determine in a linear time
which node set is Vsmall. In this subsection, we will
recursively construct the compacted trie Tsmall of all
the labels of nodes in Vsmall. Note that the technique
for constructing Tsmall is very similar to that for con-
structing the odd tree in Farach’s algorithm.

Consider a new CS-tree U ′ = (Vsmall, Esmall),
where Esmall = {(v, parentU ′ = parentU (parentU (v)))
|v ∈ Vsmall, v 6= t} and the edge labels are de-
termined as follows. Radix sort the label pairs
pair(v) = (label((v, parentU (v))), label((parentU (v),
parentU (parentU (v))))) for all v ∈ Vsmall\t and re-
move duplicates, where label(e) denotes the label of
an edge e in the original CS-tree U . Let rank(v)
be the rank of pair(v) in the sorted list, which be-
longs to an integer alphabet [1, n/2] because the size
of the new tree U ′ is not larger than half of that of
the original CS-tree U . Let orig pair(i) be a label pair
pair(v) such that rank(v) = i. Let the label of an edge

(v, parentU ′(v)) ∈ Esmall be rank(v). Notice that all
of these procedures can be performed in a linear time.

We then construct the suffix tree TU ′ of U ′ by us-
ing our entire algorithm recursively. After that, we con-
struct Tsmall from TU ′ as follows. We can consider a
tree T ′ whose edge labels of TU ′ are modified to the
original labels in U : for example, if the label of an edge
in TU ′ is ijk, the label of the corresponding edge in T ′

is orig pair(i), orig pair(j), orig pair(k). Notice that
this modification can be performed by making only a
minor modification of the edge label representation and
that it takes only linear time. We can construct Tsmall

from T ′ easily. T ′ contains all the labels of nodes in
Vsmall, but is not the compacted trie: the first char-
acters of labels of outgoing edges from the same node
may be the same. But the second character is differ-
ent, and the edges are sorted lexicographically. Thus
we can change T ′ to Tsmall by making only a minor ad-
justment: we merge such edges and make a node, and
if all the first characters of all the labels of edges are
the same, we delete the original node.

In this way, we can construct Tsmall in a T (n/2)+
O(n) time, where T (n) is the time our algorithm takes
to build the suffix tree of a CS-tree of size n.

3.3 Building the Other Half of the Tree

In this section, we show how to construct the com-
pacted trie Tlarge of all the labels of nodes in Vlarge

from Tsmall in a linear time. The technique is a slightly
modified form of the second step of Farach’s algorithm,
which constructs the even tree from the odd tree.

If we are given an lexicographic traverse of the
leaves of the compacted trie (which is called lex-
ordering in [8]), and the length of the longest common
prefix of adjacent leaves, we can reconstruct the trie
[8], [9]. We will obtain these two parts of Tlarge from
Tsmall, and construct Tlarge in the same way. But this
method can obtain only the label length from the leaf
or root for each node of the compacted trie. Recall that
each label is represented by the first node and the la-
bel length in our case. We can obtain that node from
its specified depth and its some descendant leaf in con-
stant time according to Theorem 3. Hence the total
time required by this procedure is O(n).

Any leaf in Tlarge, except for those with labels of
only one character, has a label consisting of a single
character followed by the label of some corresponding
leaf in Tsmall. We can obtain the lex-ordering of the la-
bels of leaves in Tsmall by an in-order traverse of Tsmall

which takes only a linear time. Thus we can obtain
the lex-ordering of the labels of leaves (Si(m)) in Tlarge

by using the radix sorting technique, because we have
Si[m] and the lexicographically sorted list of Si(m−1).

The longest common prefix length of adjacent
leaves of Tlarge can also be obtained easily by us-
ing Tsmall. Let Si(m) and Sj(n) be the labels of

4
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999

two adjacent leaves in Tlarge. If Si[m] 6= Sj [n], the
longest common prefix length is 0. Otherwise, it is
1 + lcp(Si(m− 1), Sj(n− 1)) which can be obtained in
a constant time from Tsmall after linear-time prepro-
cessing on Tsmall (see Theorem 2). In this way, we can
construct Tlarge from Tsmall in O(n).

3.4 Merging the Trees

Now we have two compacted tries Todd and Teven. In
this subsection, we merge Todd and Teven to construct
the target suffix tree TU . We call the compacted trie
of odd/even-length suffixes of strings the generalized
odd/even tree of the strings. The odd/even tree of
a CS-tree is also the generalized odd/even tree of the
strings represented by the CS-tree. Farach’s algorithm
merges the odd and even trees in a time linear to the
sum of the sizes of odd and even trees. It can be directly
applied also to our problem of merging generalized odd
and even trees and we can also achieve O(n) time in
our case. The outline of the algorithm is as follows.

First, we merge the even and odd trees as following
by treating one of two edge labels as a prefix of the other
label if the first characters of labels of two edges are the
same. Let edges e1 = (v, v1) and e2 = (v, v2) be the
edges which starts from the same node v and have the
same first character. Let l1 and l2 be the label lengths
of e1 and e2, respectively. Without loss of generality,
we let l1 ≥ l2. Then we construct a internal node v′1
between v and v1 if l1 > l2, otherwise let v′1 be v1. In
case that l1 > l2, let the label of edge (v, v′1) be the
first l2 characters of the label of original edge (v, v1)
and let the label of edge (v′1, v1) be the last l1 − l2
characters of the label of original edge (v, v1). Then we
merge two edges (v, v′1) and e2. This merging requires
only constant time because we can find the node of the
CS-tree which corresponds to the first character of new
edge (v′1, v1) in a constant time. We merge recursively
all over the two trees by the normal coupled depth first
search. Thus the total computing time required for the
merging is also O(n).

Next, we unmerge the edges with different labels
because we have merged edges too far. Farach showed
that we can unmerge correctly in a linear time [8] for
the problem of strings, which is also the case for our
problem. Consider a node u in the merged tree M ,
and let v′ ∈ Todd and w′ ∈ Teven be some nodes that
become u’s descendants, v and w respectively, in M .
Let L(u) be the length of the label of u, and L̂(u) be
the longest common prefix length of the labels of v and
w. We can see that u is merged too far if L(u) > L̂(u).

L(u) can be consulted in Todd or Teven, and L̂(u) can be
computed for all the nodes in O(n) time by the Farach’s
technique which uses a data structure called d-links.
We call u a border node if L̂(u) < L(u) and L̂(p) = L(p)
where p is the parent of u. All the border nodes can
be found in a linear time. We can correct M by only

unmerging the border nodes. For each unmerged edge,
we must find the node of the CS-tree that corresponds
to the first character of its label, which requires only a
constant time according to Theorem 3. Thus the total
computing time for unmerging is O(n).

Hence the step of our algorithm for merging trees
takes a total of O(n) time. Thus we obtain an equation
T (n) = T (n/2) + O(n), where T (n) is the time needed
to construct the suffix tree of a CS-tree of size n. There-
fore, our algorithm achieves the optimal T (n) = O(n)
computing time for general CS-trees with integer al-
phabets.

4. The BSuffix Tree

In this section, we propose a new data structure, the
Bsuffix tree, which enables efficient queries of com-
pletely balanced binary trees from any binary forest
(including a single tree). It can also be used for query-
ing completely balanced k-ary subtrees from any k-ary
forest (k need not be constant in this case), but we will
deal with binary trees at first. The Bsuffix tree is a
data structure for matching of nodes, but it can be also
used for matching of edges (see subsection 4.3).

4.1 Definition of the BSuffix Tree

Consider a completely balanced binary tree P of height
h. Let p1, p2, . . . , p2h−1 be the nodes of P in breadth-
first order, and let ci ∈ {1, . . . , n} be the alphabet given
for node pi. Note that pbi/2c is the parent of pi in
this order. We call c1c2 · · · c2h−1 the label of P . We
call substring c2i · · · c2i+1−1 of this label a Bcharacter.
Furthermore, we call a string of Bcharacters a Bstring.
For Bstring b1b2 . . . bn, we call b1b2 . . . bm(m < n) a
Bprefix of the Bstring. Note that c1c2 · · · c2h−1 is a
Bstring of length h. For two Bcharacters b1 and b2,
we let b1 > b2 if b1 is lexicographically larger than b2 in
the normal string representation. Note that Bcharacter
b = c2i · · · c2i+1−1 can be represented by node p2i ∈ P
and integer i.

Consider a binary forest U of size n whose nodes
are labeled with a character of an integer alphabet
{1, . . . , n}. Let v1, v2, . . . , vn be the concatenated list
of the breadth-first-ordered node lists of all the binary
trees in forest U , and let ai ∈ {1, . . . , n} be the label of
node vi. Let Li be the label of the largest completely
balanced binary subtree of U whose root is node vi. We
call Li followed by $i /∈ {1, . . . , n} ($i 6= $j) the Blabel
of node vi. If the roots of two completely balanced bi-
nary subtrees P1 and P2 of U are the same node and P1

includes P2, the label of P2 is a Bprefix of the label of
P1. The Bsuffix tree of U is the compacted trie T of the
Blabels of all the nodes in U in the Bstring sense, i.e.,
the outgoing edges from some node in the suffix tree
have a label of different Bcharacter. Figure 4 shows an
example of a Bsuffix tree. By using T , we can easily

SHIBUYA: CONSTRUCTING THE SUFFIX TREE OF A TREE WITH A LARGE ALPHABET
5

query any completely balanced binary subtree of U .
Edge labels of T can be represented by the first

node in U and the depths of the first and the last nodes
in the corresponding subtree pattern. Therefore T can
be stored in O(n) space. Note that we can access any
member of the edge label of T in a constant time if we
have both the breadth-first list and the depth-first list
of the nodes of each tree in forest U .

In a Bsuffix tree, to enable fast access to a node’s
outgoing edge whose first Bcharacter of its label is
given, two simple preprocessing can be considered. One
simple method is constructing a hash table for it, which
enables linear time query in average. The data struc-
ture for it can be built in linear time. The other method
is constructing a prefix tree to represent all of the first
Bcharacters of edge labels, which enables deterministic
O(m log |Σ|) query time for a query of size m, where |Σ|
denotes the size of the alphabet. This data structure
can also be built in linear time.

4.2 Construction of the BSuffix Tree

In this subsection, we describe the O(n) algorithm for
constructing the Bsuffix tree T of U . Figure 3 shows
the outline of the algorithm in a pseudo-code.

If forest U consists of only nodes with less than two
children, it is obvious that we can construct the Bsuffix
tree of U in O(n) time. Otherwise, we first construct a
new binary forest U ′ as follows: For every node vi with
two children vj , vj+1, construct a node of U ′ (let it be
wi). If vj and/or vj+1 have two children, let wi be the
parent of wj and/or wj+1 in forest U ′. Radix sort the
label pairs (aj , aj+1) and remove duplicates. Let the
label a′

i of wi be the rank of the label pair (ai, ai+1) in
the sorted list. Notice that the number of nodes in U ′ is
not larger than n/2. We construct the Bsuffix tree T ′ of
U ′ by using our entire algorithm recursively. Figure 5
shows an example of this recursive construction of new
binary forests (trees in this case). Next, we construct
T from T ′.

If we are given the lexicographically sorted list of
the Blabels of all the nodes in U and the length (i.e.,
number of Bcharacters) of the longest common Bprefix
of adjacent Blabels in this list, we can construct Bsuffix

construct Bsuffix tree(binary forest U)
{

if (U has no node with more than 1 child) {
The Bsuffix tree T of U is obvious;
return(T);

}
Construct a forest U ′ (|U ′| ≤ |U |/2);
T ′ = construct Bsuffix tree(U ′);
Construct the Bsuffix tree T using T ′;
return(T);

}

Fig. 3 Algorithm outline for constructing the Bsuffix tree of a
binary forest.

tree T in a linear time. We obtain these two pieces of
information from T ′.

Notice that the in-order traverse of leaves of T ′

corresponds to a lexicographically sorted list of all the
first-character-deleted Blabels of nodes that have two
children in U . Thus we can obtain the lexicographically
sorted list of all the node Blabels of U by radix sorting
the concatenated list of the in-order traverse of leaves
of T ′ and the Blabels of nodes with no or only one child.

The longest common Bprefix length l of adjacent
Blabels can also be obtained from T ′. If the first char-
acters of two adjacent Blabels are different, l = 0. Oth-
erwise, if one of the adjacent Blabels consists of only
one character, the depth is l = 1. Otherwise, we com-
pute the depth as follows. Let vi and vj be the adjacent
nodes. Notice that we can obtain the longest common
Bprefix length l′ of Blabels of wi and wj in U ′ in a
constant time (see Theorem 2). Then it is clear that
l = l′ + 1.

In this way we can construct T from T ′ in a linear
time. We obtain T (n) = T (n/2) + O(n), where T (n)
denotes the time taken to compute the Bsuffix tree of
a binary tree of size n. Therefore we conclude that our
algorithm runs in O(n) time.

4.3 Discussions on the Bsuffix Tree

Bsuffix trees are very similar to normal suffix trees. It
enables O(m log m) query for a completely balanced bi-
nary tree pattern of size m. It can also be used for
finding (largest) common completely balanced binary
subtrees of two binary trees in linear time. We can
also enumerate frequent patters of completely balanced
binary trees in linear time by using this data structure.

The data structure and our algorithm assume that
the labels are given to nodes, but they can very easily
be modified to deal with edge-matching problems as
follows: Let the label of any node except for the root
be the label of the incoming edge from its parent. Then
T ′ in the above algorithm can be used as the compacted
trie for edge matching.

Bsuffix trees can also be used for querying com-
pletely balanced k-ary trees from any k-ary forest U .
First, if a node has less than k children, remove the
edges between it and its children. Otherwise, we recon-
struct each node that has k children as a completely
balanced binary tree of depth dlog2 ke and move each
child to its leaf. For each inside node and leaf to which
no node was mapped, give as its label a new character
that is not in use but is same for all such nodes. Notice
that the size of the reconstructed forest is at most twice
as that of the original one. Then construct the Bsuffix
tree for this reconstructed binary tree. It can obviously
used for querying completely balanced k-ary trees.

6
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999

v1

v2

v4 v5

v6
v7

v11v10

v8

v9

v12 v13 v14 v15

v3

1

1

1

2

23

3 4 3

3 4 3

4

4

4

1 234 3 434$3421$ 3434$21 34$ 34$3434$ $ $$ $ $ $ $ $ $
1 23 4 567 8 910 1112 1314 151 234 3 434$3421$ 3434$21 34$ 34$3434$ $ $$ $ $ $ $ $ $
1 23 4 567 8 910 1112 1314 15

(1) Binary tree U (2) Bsuffix tree for U

Fig. 4 An example of the Bsuffix tree.

v1

v2

v4 v5

v6
v7

v11v10

v8

v9

v12 v13 v14 v15

v3

1

1

1

2

23

3 4 3

3 4 3

4

4

4

1

12

2 2

22

1

2

2

21
34

1
2

21
22

1
2

Fig. 5 Recursive construction of new binary trees in computing Bsuffix tree

5. Concluding Remarks

We have described an optimal O(n) algorithm for con-
structing the suffix tree of a common suffix tree (CS-
tree). In addition, we proposed a new data structure
called a Bsuffix tree, that enables efficient query for
completely balanced subtrees. As for future work, we
must seek for more useful suffix trees that allow query-
ing more general and flexible patterns than paths or
completely balanced trees. It is also an important prob-
lem to deal with dynamic trees.

References

[1] A. Apostolico and Z. Galil, eds., Pattern Matching Algo-
rithms, Oxford University Press, New York, 1997.

[2] S. Alstrup and J. Holm, “Improved Algorithms for Finding
Level Ancestors in Dynamic Trees,” Proc. 27th Interna-
tional Colloquium on Automata, Languages, and Program-
ming, LNCS 1853, pp. 73-84, 2000.

[3] O. Berkman and U. Vishkin, “Finding Level-Ancestors in
Trees,” J. Comp. Sys. Sci., Vol. 48, pp. 214-230, 1994.

[4] D. Breslauer, “The Suffix Tree of a Tree and Minimizing Se-
quential Transducers,” Theoretical Computer Science, Vol.
191, pp. 131-144, 1998.

[5] M. T. Chen and J. Seiferas, “Efficient and Elegant Subword

Tree Construction,” A. Apostolico and Z. Galil, eds., Com-
binatorial Algorithms on Words, Chapter 12, NATO ASI
Series F: Computer and System Sciences, pp. 97-107, 1985.

[6] R. Cole, R. Hariharan and P. Indyk, “Tree Pattern Match-
ing and Subset Matching in Deterministic O(n log3

n)-
time,” Proc. 4th Symposium on Discrete Algorithms, pp.
245-254, 1999.

[7] P. Dietz, “Finding level-ancestors in dynamic trees,” Proc.
2nd Workshop on Algorithms and Data Structures, LNCS
1097, pp. 32-40, 1991.

[8] M. Farach, “Optimal Suffix Tree Construction with Large
Alphabets,” Proc. 38th IEEE Symp. Foundations of Com-
puter Science, pp. 137-143, 1997.

[9] M. Farach and S. Muthukrishnan, “Optimal Logarithmic
Time Randomized Suffix Tree Construction,” Proc. 23rd In-
ternational Colloquium on Automata, Languages, and Pro-
gramming, pp. 550-561, 1996.

[10] R. Giancarlo, “The Suffix Tree of a Square Matrix, with Ap-
plications,” Proc. 4th Symposium on Discrete Algorithms,
pp. 402-411, 1993.

[11] D. Gusfield, Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology, Cambridge
University Press, 1997.

[12] D. Harel and R. R. Tarjan, “Fast Algorithms for Finding
Nearest Common Ancestors,” SIAM J. Computing, Vol. 13,
pp. 338-355, 1984.

[13] D. K. Kim and K. Park, “Linear Time Construction of 2-D
Suffix Trees,” Proc. 26th International Colloquium on Au-
tomata, Languages, and Programming, pp. 463-472, 1999.

SHIBUYA: CONSTRUCTING THE SUFFIX TREE OF A TREE WITH A LARGE ALPHABET
7

[14] S. R. Kosaraju, “Efficient Tree Pattern Matching,” Proc.
30th IEEE Symp. Foundations of Computer Science, pp.
178-183, 1989.

[15] E. M. McCreight, “A Space-Economical Suffix Tree Con-
struction Algorithm,” J. ACM, Vol. 23, pp. 262-272, 1976.

[16] T. Shibuya, “Constructing the suffix tree of a tree with
a large alphabet,” Proc. 10th Annual International Sym-
posium on Algorithms and Computation, LNCS 1741, pp.
225–236, 1999.

[17] E. Ukkonen, “On-Line Construction of Suffix-Trees,” Algo-
rithmica, Vol. 14, pp. 249-60, 1995.

[18] P. Weiner, “Linear Pattern Matching Algorithms,” Proc.
14th Symposium on Switching and Automata Theory, pp.
1-11. 1973.

