
Searching Protein 3-D Structures in Faster Than Linear Time

Tetsuo Shibuya
Human Genome Center, Institute of Medical Science,

University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, JAPAN,

E-mail: tshibuya@hgc.jp

Abstract

Searching for similar structures from a 3-D structure database of proteins is one of
the most important problems in post-genomic computational biology. To compare two
structures, we ordinarily use a measure called the RMSD (root mean square deviation)
as the similarity measure. We consider a very fundamental problem of finding all the
substructures whose RMSDs to the query are within some given threshold, from a 3-D
structure database. The problem also appears in many other fields, such as computer
vision and robotics. In this paper, we propose the first algorithm that runs in faster than
linear time in average. Our new algorithm runs in average-case O(m + N/m1−ϵ), where
N is the database size, m is the query length, and ϵ is an arbitrary small constant such
that 0 < ϵ < 1. It is a significant improvement over previous algorithms on the problem,
considering that the best known worst-case time complexity of the problem is O(N log m),
and the best known average-case (expected) time complexity of the problem was O(N).

1 Introduction

With the aid of various state-of-the-art laboratory methods such as NMR (Nuclear Mag-
netic Resonance), more and more 3-D structures of bio-molecules, especially the proteins, are
determined. For example, the number of structures contained in the PDB (Protein Struc-
ture Data Bank) database [3] was only around 1, 000 in 1993, but it becomes more than
58, 000 in June 2009, and it is still increasing very rapidly (about 20% per year). Moreover,
tremendous number of protein structures are being predicted on super computers these days.
Database searching on such databases has many applications in various fields of molecular bi-
ology [2, 12, 14, 21]. For example, we can predict the functions of some protein if its structure
is similar to another protein with known functions, as proteins with similar structures tend
to have similar functions. Hence, 3-D structure database searching becomes more and more
important in computational biology, and faster searching techniques are seriously needed.

A protein is a chain of amino acid residues, and its structure is usually represented by a
sequence of 3-D coordinates of representative atoms of residues (atoms named Cα are usually
used). There are also many other important chain molecules in living cells, such as DNAs,
RNAs, and glycans, and they can also be represented by a sequence of 3-D coordinates. No two
molecular structures have exactly the same structure. Therefore we need to search for similar
structures from the structure databases, instead of searching for exactly the same structure. In

1

this paper, we deal with a problem of searching for similar structures from structure databases
of chain molecules, each of which is represented by a sequence of 3-D coordinates.

There have been developed tremendous number of algorithms for comparing/searching
protein structures, which can be categorized roughly into two types. One is a group of al-
gorithms that compare two structures geometrically in the 3-D space, using the coordinates
of structures as their inputs. They consider that the structures are rigid or near-rigid, and
superimpose (substructures of) the two structures by rotating and translating one of them.
The other is a group of algorithms that uses more abstract information of the structures, such
as the secondary structure elements (SSEs) [23, 24]. In this paper, we focus on the first type
of the algorithms, i.e., we compare the sequences of coordinates without any abstraction.

Biologists ordinarily use a similarity measure called the RMSD (root mean square devia-
tion) [1, 11, 18, 19, 21, 25, 26] to compare two structures of bio-molecules. There are also many
other measures, but many of them are just variants of the RMSD [17]. It is the most funda-
mental measure to determine geometric similarity between two same-length sequences of 3-D
coordinates, which is also used in various other fields, such as computer vision and robotics.
(The problem minimizing the RMSD is called the least squares fitting problem in computer
vision.) It is defined as the square root of the minimum value of the average squared distance
between each pair of corresponding atoms, over all the possible rotations and translations.
(See section 2.2 for more details.) In this paper, we consider the following problem related to
the RMSD, which is one of the most fundamental computational problems in computational
molecular biology.

3-D Substructure Search Problem

We are given a text structure P and a query structure Q, both of which are represented by
the 3-D coordinates of the residues of the structures. The problem is to find all the positions
of the substructures of P whose RMSDs to Q are at most a given fixed threshold c, without
considering insertions or deletions.1

In case the database consists of more than one structure, we can reduce the problem into
the above single-text problem by concatenating all the database structures into a single text
structure and ignoring substructures that cross over the boundaries of concatenated structures.
In general, c is set to a fixed constant proportional to the distance between two adjacent atoms
of the chain molecules. In the case of protein structures, the distance between two adjacent
Cα atoms is always around 3.8Å, while structural biologists say that two protein structures
are similar to each other if their RMSD is at most around 2Å.

History

In 1976, Kabsch [18, 19] proposed a sophisticated mathematical RMSD computation algorithm
based on the singular value decomposition that computes the RMSD between two structures
of size n in O(n) time. If we directly apply the algorithm to the 3-D substructure search
problem, it can be solved in O(Nm) time, where N is the length of the text structure and
the m is the length of the query structure. In 1987, Schwartz and Sharir [25] proposed an

1The problem becomes much harder if we take deletions and insertions into account. Even the simplest
version of the problem is known to be NP-hard [15].

2

algorithm based on the fast Fourier transform technique that runs in O(N log m) time, which
is the best-known worst-case time complexity.2 More recently, Shibuya [27] proposed a linear
expected-time (average-case time) algorithm, which was the best-known time complexity before
this paper, though its worst-case time complexity is O(Nm). To analyze the average-case time
complexity, he used the freely-jointed chain model [4, 10, 13, 22] as a model of random protein
structures. The model is is widely used for analyzing properties of various chain molecules (see
section 2.3). The model was also used in [28] to analyze the average time complexity of an
algorithm on structures of chain molecules. According to [27], there is high consistency between
the theoretical results deduced from the freely-jointed chain model and the experimental results
on the whole PDB database, and it is very reasonable to use the model for analyzing the average
computational complexity of algorithms for molecular structures.

Shibuya [27] also proposed several preprocessing algorithms that achieves even faster ex-
pected query time complexity. One is an O(N log2 N)-time and O(N log N)-space prepro-
cessing algorithm with expected query time complexity of O(m + N/

√
m). Another is an

O(N log N)-time and O(N)-space preprocessing algorithm with expected query time complex-
ity of O(N√

m
+ m log(N/m)). But the expected query time complexity of our algorithm in this

paper is theoretically better than any of these algorithms, even though our algorithm does not
require any preprocessing.

Our results

The expected time complexity of the algorithm in [27] seems to be optimal, as we apparently
require Ω(N) time to sequentially load all the data into memory. But in case we can randomly
access the input data, there could be algorithms faster than O(N). For example, the famous
Boyer-Moore algorithm [5], which is one of the most widely-used searching algorithms for
ordinary texts, achieves O(m + N/ min(m, |Σ|)) average time complexity, where N is the text
size, m is the query size and |Σ| is the alphabet size, by permitting random access to the
characters in the text.

In this paper, we make a breakthrough by proposing the first algorithm whose expected
time complexity is better than linear for the above 3-D substructure search problem. It runs
in expected O(m + N/m1−ϵ) time, where ϵ is an arbitrary small constant such that 0 < ϵ <
1, under the assumption that we can randomly access any data in the database (i.e., the
coordinates of any atoms in the text structure). Note that this time complexity is even better
than the query time complexity of the previous algorithms with preprocessing [27], though
our new algorithm does not require any preprocessing. Our analysis of the expected time
complexity is based on the freely-jointed chain model, which has also been used in previous
work [27, 28] for the analysis of expected time complexities of previous algorithms.

The organization of this paper

In section 2, we describe the notations used in this paper and previous related work as pre-
liminaries. In section 3, we describe our algorithm. In section 4, we analyze the expected
(average-case) time complexity of our algorithm. In section 5, we conclude our results.

2The original algorithm runs in O(N log N) time. See [27] for the technique to improve it into O(N log m).

3

2 Preliminaries

2.1 Notations and Definitions

A structure of a chain molecule is represented by a notation like S = {s⃗1, s⃗2, . . . , s⃗n}, where
s⃗i denotes the 3-D coordinates of the i-th atom. The length n of S is denoted by |S|. A
structure S[i..j] = {s⃗i, s⃗i+1, . . . , s⃗j} (1 ≤ i ≤ j ≤ n) is called a substructure of S. For
two structures S = {s⃗1, s⃗2, . . . , s⃗n} and T = {t⃗1, t⃗2, . . . , t⃗n′}, the concatenated structure
{s⃗1, s⃗2, . . . , s⃗n, t⃗1, t⃗2, . . . , t⃗n′} is denoted by S+T. R ·S denotes the structure S rotated by the
rotation matrix R, i.e., R · S = {Rs⃗1, Rs⃗2, . . . , Rs⃗n}.

v⃗t denotes the transpose of the vector v⃗ and AT denotes the transpose of the matrix A.
trace(A) denotes the trace of the matrix A. |v⃗| denotes the norm of the vector v⃗. 0⃗ denotes the
zero vector. ⟨x⟩ denotes the expected value of x. var(x) denotes the variance of x. Prob(X)
denotes the probability of the event X .

In the rest of this paper, P = {p⃗1, p⃗2, . . . , p⃗N} denotes the text structure and Q =
{q⃗1, q⃗2, . . . , q⃗m} denotes the query structure. Note that the size m of the query could be
an arbitrary number such that 1 < m ≤ N . The 3-D substructure search problem is to find all
the positions i such that the RMSD (see section 2.2 for its definition) between P[i..i + m− 1]
and Q is at most a given fixed threshold c.

2.2 RMSD: Root Mean Square Deviations

The RMSD (root mean square deviation) [1, 11, 18, 19, 25, 26] is the most widely-used geo-
metric similarity measure between two sequences of 3-D coordinates that represent molecular
structures. The RMSD between two 3-D coordinates sequences S = {s⃗1, s⃗2, . . . , s⃗n} and T =
{t⃗1, t⃗2, . . . , t⃗n} is defined as the minimum value of ER,v⃗(S,T) =

√
1
n

∑n
i=1 |s⃗i − (R · t⃗i + v⃗)|2

over all the possible rotation matrices R and translation vectors v⃗. Let RMSD(S,T) denote
the minimum value, and let R̂(S,T) and ˆ⃗v(S,T) denote the rotation matrix and the translation
vector that minimizes ER,v⃗(S,T).

Kabsch [18, 19] proposed an efficient linear-time algorithm to compute RMSD(S,T),
R̂(S,T) and ˆ⃗v(S,T) as follows. If the rotation matrix R is fixed, ER,v⃗(S,T) is known to
be minimized when the centroid (center of mass) of R ·T is translated to the centroid of S by
the translation vector v⃗, regardless of what the rotation matrix R is. It means that ˆ⃗v(S,T)
can be computed in linear time if we are given R̂(S,T). Moreover, it also means that the
problem of computing the RMSD can be reduced to a problem of finding R (i.e., R̂(S,T))
that minimizes E′

R(S,T) =
∑n

i=1 |s⃗i − R · t⃗i|2, by translating both S and T so that both of
their centroids are moved to the origin of the coordinates, which can be done in linear time.

If both structures have been already translated so that both centroids are moved to the ori-
gin, we can compute R̂(S,T) in linear time as follows [1, 18, 19]. Let J =

∑n
i=1 s⃗i · t⃗it. Clearly,

J can be computed in O(n) time. Then E′
R(S,T) can be described as

∑n
i=1 (s⃗i

ts⃗i + t⃗i
tt⃗i) −

2 · trace(R · J), and trace(R · J) is maximized when R = V UT , where UΛV is the singular
value decomposition (SVD) of J . Thus R̂(S,T) can be obtained from J in constant time, as
J is a 3× 3 matrix and the SVD can be computed in O(d3) time for a d× d matrix [16]. Note
that there are degenerate cases where det(V UT) = −1, which means that V UT is a reflection
matrix. See [1, 11] for the details of the degenerate cases. Finally, we can compute the RMSD

4

in linear time once we have obtained R̂(S,T). In total, we can compute the RMSD in O(n)
time.

There exists an easily-computable lower bound of the RMSD [27], as in the following.
Let Uleft denote {u⃗1, u⃗2, . . . , u⃗⌊k/2⌋} and Uright denote {u⃗⌊k/2⌋+1, u⃗⌊k/2⌋+2, . . . , u⃗2·⌊k/2⌋} for a
structure U = {u⃗1, u⃗2, . . . , u⃗k}. Let G(U) denote the centroid of the structure U, i.e., G(U) =
1
k

∑k
i=1 u⃗i. Let F (U) denote |G(Uleft)−G(Uright)|/2, and let D(S,T) denote

√
2 · |Sleft|/|S| ·

|F (S)−F (T)| for two structures such that |S| = |T|. Note that |Sleft|/|S| ≈ 1/2. It is known
that D(S,T) is always smaller than or equal to RMSD(S,T). Our algorithm in section 3
utilizes this lower bound.

2.3 Freely-Jointed Chain Molecular Model

To analyze the average-case (expected) time complexity of any algorithm, we need some model
for random inputs. For example, we usually use just random character strings as a model of
random inputs to the algorithms on textual strings in theoretical computer science.

The freely-jointed chain model [4, 10, 13, 22] is a simple and well-known fundamental model
for average chain molecular structures, and is often used in analyses of the chain molecular
behaviors in theoretical molecular physics. The model is also called the random-walk chain
model, or just the ideal chain model. In the model, we assume that the chain molecules can be
considered as random walks. It ignores many physical/chemical constraints, but it is known
to reflect the behavior of real molecules very well. All the previous expected time complexity
analyses of the algorithms on protein 3-D structures are based the model [27, 28]. According
to [27], the experimental results on the PDB database consist with their theoretical result
based on the freely-jointed chain model. Following them, we also assume in this paper that
the structures in the database (i.e., text structures) follow the freely-jointed chain model.3

Consider a chain molecule S = {s⃗0, s⃗2, . . . , s⃗n} of length n+1, in which the distance between
any two adjacent atoms is fixed to some constant r.4 In the freely-jointed chain model, a bond
between two adjacent atoms, i.e., b⃗i = s⃗i+1− s⃗i, is considered as a random vector that satisfies
|⃗bi| = r, and b⃗i is considered to be independent from any other bond b⃗j (j ̸= i). In this paper,
we let r = 1 by considering the distance between two adjacent atoms as the unit of distance. If
n is large enough, the distribution of the end-to-end vector s⃗n− s⃗0 is known to converge to the
Gaussian distribution in 3-D space, in which ⟨s⃗n − s⃗0⟩ = 0⃗ and ⟨|s⃗n − s⃗0|2⟩ = n [4, 10]. In the
distribution, the probability (or probability density) that s⃗n − s⃗0 is located at some position
(x, y, z) is given as follows:

Wn(x, y, z)dxdydz = (
3

2πn
)

3
2 e−3(x2+y2+z2)/2ndxdydz. (1)

3 The Algorithm

We describe our new algorithm in this section. We first introduce in section 3.1 an efficiently-
computable lower bound for the RMSD between each text substructure and the query struc-
ture. In section 3.2, we describe a new algorithm that utilizes the lower bound. The algorithm

3On the other hand, we give no assumption on the query structures.
4In the case of proteins, the distance between two adjacent Cα atoms is fixed to 3.8Å.

5

Text Structure P
Query Structure Q

P[i..i+m-1]Pi,1 Pi,2 Pi,k
Qi,1 Qi,2 Qi,k

P[i+w-1-i']Q[w-i']w
i' = (i-1) mod w pi,1 pi,2 pi,h+1

Figure 1: Division of the text and query structures for computing the lower bound Bi of
RMSD(P[i..i+m−1],Q). The black ellipses represent the atoms whose coordinates are used
for computing the lower bounds, while the white ellipses represent the dismissed atoms.

first searches for all the substructures with lower bounds that are at most the given thresh-
old c, as candidates of the similar substructures. Then the algorithm checks each candidate
whether its RMSD value is actually at most the threshold c. There are two keys for achieving
the better expected time. One is that the lower bounds can be checked without accessing all
of the coordinates of the text structure, as is described in section 3.1. The other is that not
all the lower bounds are actually computed, as is described in section 3.2.

3.1 A Lower Bound of the RMSD

To achieve the time complexity better than linear time, we cannot access all the coordinates
of the text structure P.5 Let k be some positive integer such that k ≤ m/2, and w be some
positive integer such that w ≤ m+2

2·(k+1) . Note that we will let in section 4 w be some integer in
Θ(m1−ϵ1) and k be some constant such that k > 4/ϵ1, where ϵ1 is an arbitrary small constant
such that 0 < ϵ1 < 1, to achieve the expected time complexity of O(m + N/m1+ϵ) (ϵ is an
arbitrary small constant such that ϵ1 < ϵ < 1). In our algorithm, we use only coordinates of
atoms whose indices are multiples of w, i.e., P[j ·w] for some j, to obtain lower bounds of the
actual RMSD values.

From now on, we present a lower bound (Bi in the following) for RMSD(P[i..i+m−1],Q),
which satisfies the above requirement, i.e., it must be computable with only the text coordi-
nates whose indices are multiples of w. Let i′ = (i− 1) mod w, and h = ⌊ m

k·w⌋. Let p⃗i,j denote
P[i−1+j ·w−i′] and q⃗i,j denote Q[j ·w−i′]. Let Pi,j = {p⃗i,(j−1)h+1, p⃗i,(j−1)h+2, . . . , p⃗i,j·h}, and
Qi,j = {q⃗i,(j−1)h+1, q⃗i,(j−1)h+2, . . . , q⃗i,j·h}. Figure 1 shows the locations of these structures on
P and Q. In the following, we describe a lower bound for RMSD(P[i..i + m− 1],Q) that can
be computed by using only the coordinates in Pi,1+Pi,2+ . . .+Pi,k and Qi,1+Qi,2+ . . .+Qi,k.

Let Bi be
√

h
m

∑k
j=1{D(Pi,j ,Qi,j)}2, where D(S,T) is the lower bound of RMSD(S,T)

introduced in section 2.2. Let R̂i,j and ˆ⃗vi,j denote the rotation matrix and the translation
vector that optimize RMSD(Pi,j ,Qi,j). Similarly, let R̂i and ˆ⃗vi denote the rotation matrix

5Moreover, we cannot compute all the lower bounds for all the positions of the text structure. We will handle
this problem in section 3.2.

6

and the translation vector that optimize RMSD(P[i..i + m− 1],Q). Then, we can prove that
Bi ≤ RMSD(P[i..i + m − 1],Q) as follows:

Bi =

√√√√√ h

m

k∑
j=1

{D(Pi,j ,Qi,j)}2 ≤

√√√√√ h

m

k∑
j=1

{RMSD(Pi,j ,Qi,j)}2

=

√√√√√ h

m

k∑
j=1

{1
h

h∑
ℓ=1

{p⃗i,(j−1)h+ℓ − R̂i,j · (q⃗i,(j−1)h+ℓ − ˆ⃗vi,j)}2}

≤

√√√√√ h

m

k∑
j=1

{1
h

h∑
ℓ=1

{p⃗i,(j−1)h+ℓ − R̂i · (q⃗i,(j−1)h+ℓ − ˆ⃗vi)}2}

=

√√√√√ 1
m

j=h·k∑
j=1

{p⃗i,j − R̂i · (q⃗i,j − ˆ⃗vi)}2 ≤

√√√√ 1
m

m∑
j=1

{p⃗i+j−1 − R̂i · (q⃗j − ˆ⃗vi)}2

= RMSD(P[i..i + m − 1],Q). (2)

3.2 The Search Algorithm

The strategy of our algorithm is very simple and is as follows: We first enumerate all the
positions i such that Bi ≤ c as candidate positions of the substructures similar to the query,
where c is the given threshold. Then we check whether the RMSD between the query and
each candidate substructure, i.e., RMSD(P[i..i + m − 1],Q) for a candidate at position i, is
actually less than or equal to c. But we cannot compute all the Bi values for all the positions of
the text structure if we want to achieve faster algorithm than the linear time, as it apparently
requires at least Ω(N) time. From now on, we discuss how to enumerate all the positions such
that Bi ≤ c for the given threshold c without computing all the Bi values.

Let P▽
i denote {p⃗i·w, p⃗(i+1)·w, . . . , p⃗(i+h−1)·w} for integers i such that 1 ≤ i ≤ N

w −h+1, and
let Q△

j denote {q⃗j , q⃗j+w, . . . , q⃗j+(h−1)w} for integers j such that 1 ≤ j ≤ m−h·w+1.6 Let Ld be
the set of integers i such that Pi,1 = P▽

d . Explicitly, Ld = {d ·w−w+1, d ·w−w+2, . . . , d ·w},
which means |Ld| = w. Let Md denote a set of integers i such that i ∈ Ld and Bi ≤ c. Let
Mall = M1 ∪ M2 ∪ . . . ∪ M⌊N/w⌋−h+1. Notice that |Mall| =

∑⌊N/w⌋−h+1
i |Mi|, as Md and Md′

are disjoint sets if d ̸= d′. Mall is the set of the candidate positions that we want to obtain,
i.e., Bi ≤ c iff i ∈ Mall. From now on, we consider how to efficiently obtain the set Mall.

If Bi =
√

h
m

∑k
j=1{D(Pi,j ,Qi,j)}2 ≤ c, it is easy to see that D(Pi,j ,Qi,j) ≤

√
m
h · c for each

j (1 ≤ j ≤ k). Let Kd,j be a set of integers i such that i ∈ Ld and D(Pi,j ,Qi,j) ≤
√

m
h · c.

Let Kd = Kd,1 ∩Kd,2 ∩ . . .∩Kd,k. Notice that Md ⊆ Kd and consequently Mall ⊆ Kall, where
Kall = K1 ∪ K2 ∪ . . . ∪ K⌊N/w⌋−h+1.7 Thus, we consider how to compute the set Kall at first.

In our algorithm, we first obtain the set Kd for each d (1 ≤ d ≤ ⌊N
w ⌋ − h + 1) as follows.

Recall that D(S,T) =
√

2 · |Sleft|/|S|·|F (S)−F (T|. (See section 2.2 for the definition of F (·).)

6Note that Pi,j = P▽
⌊(i−1)/w⌋+(j−1)h+1

, and Qi,j = Q△
(j−1)h·w+w−i′ , where i′ = (i − 1) mod w.

7If d ̸= d′, Kd and Kd′ are disjoint sets as Ld and Ld′ are disjoint sets.

7

Thus Kd,j can be obtained by finding all i ∈ Ld such that F (Pi,j)−c′ ≤ F (Qi,j) ≤ F (Pi,j)+c′,
where c′ =

√
m

2·⌊h/2⌋ · c. We can compute the values F (P▽
d) for all d (1 ≤ d ≤ N

w − h + 1)

in O(N
w) time as follows. Let P◦

i denote {p⃗i·w, p⃗(i+1)·w, . . . , p⃗(i+h′−1)·w}, where h′ = ⌊h/2⌋.
As F (P▽

d) = |G(P▽
d

left) − G(P▽
d

right)|/2, we can compute the value of F (P▽
d) in constant

time if we are given all the vectors G(P◦
i) for all i (1 ≤ i ≤ N

w − h′ + 1). (See section 2.2
for the definition of G(·).) Moreover, all these G(P◦

i) values can be computed in O(N
w) time,

as G(P◦
i+1) = G(P◦

i) + (p⃗(i+h′)·w − p⃗i·w)/h′. On the other hand, F (Q△
ℓ) can be computed

in O(|Q△
ℓ |) = O(h) time for each ℓ. Thus, we can obtain the values F (Q△

ℓ) for all ℓ =
(j − 1)h · w + w − i′ such that 0 ≤ i′ < w and 1 ≤ j ≤ k, in O(h · w · k) = O(m) time.

We can enumerate all the integers in Kd = Kd,1 ∩ Kd,2 ∩ . . . ∩ Kd,k by utilizing the k-
dimensional range search [6, 7] from a set of w points in the k-dimensional space. We can find all
the i ∈ Kd in O(|Kd|+ logk−1 w) time after an O(w logk−1 w)-time preprocessing on the query

structure [6, 7]. Thus Kall can be obtained in O(m+w logk−1 w+ N
w logk−1 w+

∑N
w
−h+1

d=1 |Kd|) =
O(m + (w + N

w) logk−1 w + |Kall|) time in total.
Then we can obtain Mall, i.e., the set of all the positions i such that i ∈ Kall and Bi ≤ c,

by checking whether the Bi value is actually at most the given threshold c for all i ∈ Kall.
We can check each Bi value only in O(k) time, as we have already computed all the necessary
values of F (P▽

d) and F (Q△
j). It takes O(k · |Kall|) time in total.

Finally, we can obtain the positions with the RMSDs actually smaller than or equal to
c, by checking whether RMSD(P[i..i + m − 1],Q) is actually at most the threshold c for all
i ∈ Mall, which takes O(m) time for each with Kabsch’s algorithm described in section 2.2. It
takes O(m · |Mall|) time in total.

Thus, the total time complexity of our algorithm is O(m + (w + N
w) logk−1 w + m · |Kall|),

as |Mall| ≤ |Kall|. It could be O(Nm) at worst, as |Kall| could be at most O(N). But we will
show in the next section that such bad cases must be very rare under the assumption that the
text structure P follows the freely-jointed chain model.8 We will show that the expected time
complexity of our algorithm is only O(m + N/m1−ϵ), where ϵ is an arbitrary small positive
constant such that 0 < ϵ < 1, by setting w and k appropriately.

4 The Expected Time Complexity of the Algorithm

Consider a structure S = {s⃗1, s⃗2, . . . , s⃗1+(h−1)·w} of length 1 + (h − 1) · w, which follows the
random walk model. Let b⃗i = s⃗i+1 − s⃗i. bi is a random vector that satisfies |⃗bi| = 1, and
b⃗i and b⃗j are independent if i ̸= j. s⃗i can be represented as s⃗1 +

∑i−1
j=1 b⃗j . Let S▽ denote

{s⃗1, s⃗1+w, s⃗1+2w, . . . , s⃗1+(h−1)·w}, and h′ = ⌊h/2⌋. Let H(U) = (G(Uleft) − G(Uright))/2 for
some structure U.9 Then the following equation holds:

H(S▽) =
1
2
{G(S▽left) − G(S▽right)}

8The query structure Q does not have to follow any model. But the same can be said if the query structure
Q follows the freely-jointed chain model, instead of the text structure P.

9Notice that F (U) = |H(U)|.

8

=
1

2 · h′ {
h′∑

i=1

(s⃗1 +
(i−1)·w∑

j=1

b⃗j) −
2h′∑

i=h′+1

(s⃗1 +
(i−1)·w∑

j=1

b⃗j)}

= − 1
2 · h′ {

h′∑
i=1

i · (
i·w∑

j=1+(i−1)w

b⃗j) +
2h′−1∑
i=h′+1

(2h′ − i) · (
i·w∑

j=1+(i−1)w

b⃗j)}. (3)

Let b⃗′i denote {(1+⌊ i−1
w ⌋)·⃗bi}/2h′ if i ≤ h′·w, and {(2h′−1−⌊ i−1

w ⌋)·⃗bi}/2h′ if i > h′·w. Then
H(S▽) can be described as

∑2h′w
i=1 b⃗′i. Let zi denote the z-coordinate of b⃗i, and z′i denote the z-

coordinate of b⃗′i. It is easy to see that ⟨zi⟩ = 0 and var(zi) = 1/3, as b⃗i is a random vector that

satisfies |⃗bi| = 1. Then, consider the value Ah,w =
∑2h′·w

i=1 ⟨|z′i − ⟨z′i⟩|⟩2+δ/
√∑2h′·w

i=1 var(z′i)
2+δ

,
where δ is some positive constant. According to Lyapunov’s central limit theorem [20], the
distribution of H(S▽) =

∑2h′w
i=1 b⃗′i converges to the Gaussian distribution if the above Ah,w

converges to 0 as 2h′ ·w grows up to infinity, for some δ (δ > 0). It can be proved as follows:

Ah,w =
1√∑2h′·w

i=1 ⟨|z′i|⟩2
2+δ

2h′·w∑
i=1

⟨|z′i|⟩2+δ ≤ 1√∑2h′·w
i=1 ⟨|z′i|⟩2

2+δ

2h′·w∑
i=1

⟨|z′i|⟩2

= {
2h′·w∑
i=1

⟨|z′i|⟩2}−δ/2 = { w

12h′2 · {
h′∑

i=1

i2 +
2h′−1∑
i=h′+1

(2h′ − i)2}}−δ/2

= { 1
18

h′ · w +
w

36h′ }
−δ/2 → 0 (2h′ · w → ∞). (4)

The same discussion can be done for the other two axes (x and y), which are independent
to each other. Thus we conclude that H(S▽) converges to a Gaussian distribution in 3-D
space. It is easy to see that ⟨H(S▽)⟩ = 0. The variance of H(S▽) can be computed as follows:

var(H(S▽)) = ⟨|H(S▽)|2⟩ − ⟨|H(S▽)|⟩2 = ⟨|H(S▽)|2⟩

= w · ⟨|
2h′∑
i=1

i

2h′ · b⃗i +
2h′−1∑
i=h′+1

2h′ − i

h′ · b⃗i|2⟩

=
w

4h′2 {
h′∑

i=1

i2 +
2h′−1∑
i=h′+1

(2h′ − i)2} =
1
6
h′ · w +

w

12h′ ≈
1
6
h′ · w, (5)

It means that the distribution of H(S▽) is the same as that of the end-to end vectors of
random walks of length h′ · w/6. Thus, the probability distribution of H(S▽) is:

Zh,w(x, y, z)dxdydz = (
9

πh′w
)

3
2 e−9(x2+y2+z2)/h′wdxdydz. (6)

Consequently, the probability (probability density) that |H(S▽)| = r is:

Zh,w(r)dr = 4πr2(
9

πh′w
)

3
2 e−9r2/h′wdr. (7)

Integrating Zh,w(r)dr, we obtain Prob(x ≤ F (S▽) ≤ y) = Prob(x ≤ |H(S▽)| ≤ y) =∫ y
r=x Zh,w(r)dr. Zh,w(r) takes the maximum value at rmax = 1

3

√
h′w, and Zh,w(rmax) =

9

12e−1/
√

πh′w. Thus Prob(x ≤ F (S▽) ≤ y) is at most (y − x) · Zh,w(rmax) = 12e−1(y −
x)/

√
πh′w for any x and y such that x < y.

To evaluate the expected time complexity of the algorithm proposed in the previous section,
we have to investigate the expected size of Kd under the assumption that the text structure P
follows the freely-jointed chain model.10 Recall that Kd,j is a set of integers i such that i ∈ Ld

and D(Pi,j ,Qi,j) ≤
√

m
h · c. Thus ⟨|Kd,j |⟩ = p · |Ld| = p · w, where p = Prob(D(Pi,j ,Qi,j) ≤√

m
h · c). As D(S,T) = |F (S)−F (T)|, p equals Prob(F (Qi,j)−

√
m
h · c ≤ F (Pi,j) ≤ F (Qi,j)+√

m
h · c). According to the above discussion, p is at most pmax = Zh,w(rmax) · 2 ·

√
m
h · c =

24c · e−1 ·
√

m/(π · h · h′ · w), for any i, j and query Q. The value pmax is in O(k
√

w/m), as
h = ⌊m/(k · w)⌋, h′ = ⌊h/2⌋ and c is a fixed constant. As the text structure P follows the
freely-jointed chain model, Pi,j and Pi,j′ (j ̸= j′) are built by independent random walks. It
means that Kd,j and Kd,j′ (j ̸= j′) are independently chosen from Ld. Thus the expected size
of Kd = Kd,1 ∩ Kd,2 ∩ . . . ∩ Kd,k is at most w · pk

max, which is in O((c′ · k)k · w · (w/m)k/2),
where c′ is some constant. Thus ⟨|Kall|⟩ is in O((c′ · k)k · N · (w/m)k/2).

Thus, the expected time complexity of the algorithm described in the last section is O(m+
(w+ N

w) logk−1 w+(c′ ·k)k ·N ·wk/2 ·m1−k/2). Let w be some integer in Θ(m1−ϵ1) and k be some
constant such that k > 4/ϵ1, where ϵ1 is an arbitrary small constant such that 0 < ϵ1 < 1.
Then the above expected time complexity becomes O(m + N · logk−1 m

m1−ϵ1
). The ‘logk−1 m’ term

can be replaced by mϵ2 where ϵ2 is an arbitrary small constant such that 0 < ϵ2 < 1− ϵ1. Let
ϵ = ϵ1 + ϵ2. Then, the above time complexity can be simplified to O(m + N/m1−ϵ). Note that
we can let ϵ be an arbitrary small constant such that 0 < ϵ < 1.

5 Concluding Remarks

We proposed a new algorithm for the 3-D substructure search problem, which is the problem
to find all the similar substructures from a 3-D structure database of chain molecules. The
algorithm runs in average-case O(m + N/m1−ϵ) time where N is the database size, m is the
query size and ϵ is an arbitrary small constant such that 0 < ϵ < 1, while the best-known
expected time complexity of the problem was O(N). Our algorithm is the first algorithm that
runs in faster than linear expected time.

We improved the expected time complexity, but the coefficient before the complexity is
large in case ϵ is small. It is an open problem whether we can reduce it or not. It is also an
open problem whether we can improve the worst-case time complexity. Our algorithm can also
be applied to similar problems in different dimensions. It would be very interesting to apply
it to many other problems in higher dimensions.

Acknowledgement

The author would like to thank Jesper Jansson, Gregory Kucherov, and Kunihiko Sadakane
for invaluable discussions. This work was partially supported by the Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science and Technology of Japan.

10The same discussion can be done if the query structure Q follows the freely-jointed chain model instead of
the text structure P.

10

References

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-D point sets.
IEEE Trans Pattern Anal. Machine Intell., Vol. 9, pp. 698–700, 1987.

[2] Z. Aung and K.-L. Tan. Rapid retrieval of protein structures from databases. Drug Dis-
covery Today, Vol. 12, pp. 732–739, 2007.

[3] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The protein data bank. Nucl. Acids Res., Vol. 28, pp.
235–242, 2000.

[4] R. H. Boyd and P. J. Phillips. The Science of Polymer Molecules: An Introduction Con-
cerning the Synthesis, Structure and Properties of the Individual Molecules That Consti-
tute Polymeric Materials, Cambridge University Press, 1996.

[5] R. S. Boyer and J. S. Moore. A fast string searching algorithm, Commun. ACM, Vol. 20,
pp. 762–772, 1977.

[6] B. Chazelle. Filtering search: a new approach to query-answering, SIAM J. Comput., Vol.
15, No. 3, pp.703–724, 1986.

[7] B. Chazelle. A functional approach to data structures and its use in multidimensional
searching, SIAM J. Comput., Vol. 17, No. 3, pp. 427–453, 1988.

[8] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
Fourier series, Math. Comput., Vol. 19, pp. 297–301, 1965.

[9] J. Dayantis and J.-F. Palierne. Monte Carlo precise determination of the end-to-end dis-
tribution function of self-avoiding walks on the simple-cubic lattice. J. Chem. Phys., Vol.
95, pp. 6088–6099, 1991.

[10] P.-G. de Gennes. Scaling Concepts in Polymer Physics, Cornell University Press, 1979.

[11] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-D rigid body transformations:
a comparison of four major algorithms. Machine Vision and Applications, Vol. 9, pp.
272–290, 1997.

[12] I. Eidhammer, I. Jonassen, and W. R. Taylor. Structure comparison and structure pat-
terns. J. Computational Biology, Vol. 7, No. 5, pp. 685–716, 2000.

[13] P. J. Flory. Statistical Mechanics of Chain Molecules, Interscience, New York, 1969.

[14] M. Gerstein. Integrative database analysis in structural genomics. Nat. Struct. Biol.,
Suppl., pp. 960–963, 2000.

[15] D. Goldman, S. Istrail and C. H. Papadimitriou. Algorithmic aspects of protein structure
similarity. Proc. 40th Annual Symposium on Foundations of Computer Science, pp. 512–
522, 1999.

11

[16] G. H. Golub and C. F. Van Loan. Matrix Computation. 3rd eds., John Hopkins University
Press, 1996.

[17] H. Hasegawa and L. Holm. Advances and pitfalls of protein structural alignment. Current
Opinion in Structural Biology, Vol. 19, pp. 341–348, 2009.

[18] W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Cryst., Vol.
A32, pp. 922–923, 1976.

[19] W. Kabsch. A discussion of the solution for the best rotation to relate two sets of vectors.
Acta Cryst., Vol. A34, pp. 827–828, 1978.

[20] O. Kallenberg. Foundations of Modern Probability, Springer-Verlag, 1997.

[21] P. Koehl. Protein structure similarities. Current Opinion in Structural Biology, Vol. 11,
pp. 348–353, 2001.

[22] H. A. Kramers. The behavior of macromolecules in inhomogeneous flow. J. Chem. Phys.,
Vol. 14, No. 7, pp. 415–424, 1946.

[23] E. Krissinel and K. Henrick. Secondary-structure matching (SSM), a new tool for fast
protein structure alignment in three dimensions. Acta Cryst. Sect., Vol. D60, pp. 2256–
2268, 2004.

[24] A. C. R. Martin. The ups and downs of protein topology: rapid comparison of protein
structure. Protein Engineering, Vol. 13, pp. 829–837, 2000.

[25] J. T. Schwartz and M. Sharir. Identification of partially obscured objects in two and three
dimensions by matching noisy characteristic curves. Intl. J. of Robotics Res., Vol. 6, pp.
29–44, 1987.

[26] T. Shibuya. Efficient substructure RMSD query algorithms. J. Comput. Biol., Vol. 14,
No. 9, pp. 1201–1207, 2007.

[27] T. Shibuya, Searching protein 3-D structures in linear time. Proc. Conference on Research
in Computational Molecular Biology (RECOMB ’09), LNBI 5541, pp. 1–15, 2009.

[28] T. Shibuya, J. Jansson, and K. Sadakane, Linear-Time Protein 3-D Structure Searching
with Insertions and Deletions, Proc. 9th Workshop on Algorithms in Bioinformatics, 2009,
to appear.

12

