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ABSTRACT

Gene identification, also known as gene finding or
gene recognition, is among the important problems
of molecular biology that have been receiving
increasing attention with the advent of large scale
sequencing projects. Previous strategies for solving
this problem can be categorized into essentially two
schools of thought: one school employs sequence
composition statistics, whereas the other relies on
database similarity searches. In this paper, we
propose a new gene identification scheme that
combines the best characteristics from each of these
two schools. In particular, our method determines
gene candidates among the ORFs that can be
identified in a given DNA strand through the use of
the Bio-Dictionary, a database of patterns that covers
essentially all of the currently available sample of the
natural protein sequence space. Our approach relies
entirely on the use of redundant patterns as the
agents on which the presence or absence of genes is
predicated and does not employ any additional
evidence, e.g. ribosome-binding site signals. The
Bio-Dictionary Gene Finder (BDGF), the algorithm’s
implementation, is a single computational engine
able to handle the gene identification task across
distinct archaeal and bacterial genomes. The engine
exhibits performance that is characterized by
simultaneous very high values of sensitivity and
specificity, and a high percentage of correctly
predicted start sites. Using a collection of patterns
derived from an old (June 2000) release of the
Swiss-Prot/TrEMBL database that contained 451 602
proteins and fragments, we demonstrate our
method’s generality and capabilities through an
extensive analysis of 17 complete archaeal and
bacterial genomes. Examples of previously
unreported genes are also shown and discussed in
detail.

INTRODUCTION

As a testimony to the accelerated pace of genome sequencing
projects, almost 80 complete genomes have been deposited in

the public databases to date, whereas many more genomes are
currently at various stages of sequencing. Consequently, the
automated identification of the protein coding regions in a
newly sequenced genome is attracting increasing attention.

Accurate gene prediction is of relevance to many biological
applications. For example, the predicted coding regions can be
used to generate probes for a DNA microarray, they can form
the basis for knockout experiments, the candidate proteins
corresponding to these predicted genes might be used as new
drug targets, etc. In this paper, we focus on the prokaryotic
gene identification problem. Gene identification is also known
as ‘gene discovery’, ‘gene recognition’ or ‘gene finding’—the
latter is the term we use in this discussion.

With the exception of a handful of reported instances in
archaeal organisms, splicing does not generally occur in
prokaryotes. Thus, the problem of gene identification in these
organisms is generally considered to be simpler than its
eukaryotic counterpart. The schemes which have been
proposed over the years have permitted great advances in the
in silico prediction of genes in prokaryotic genomes but,
arguably, have shortcomings. As such, the demand for increas-
ingly accurate prediction schemes continues.

Over the years, a large number of methods have been
proposed that address the gene finding problem. These
methods can be largely divided into two categories. The
methods in the first category make use of the statistics of DNA
sequences to determine the location of genes. In fact, it was
observed very early that the statistical properties of nucleotide
usage differ inside DNA regions which code for genes and
outside those regions: the concept of the CpG island (1) is a
demonstration of such a difference in statistical behavior.
Among the gene identification methods that make use of this
observation, those which are based on Markov models are the
most popular to date (2–5).

The second category comprises methods that are based on
similarity search in large databases of genomic information
(6–11). These methods carry out database searches in an effort
to determine DNA regions (respectively amino acid
sequences) that share similarities with the DNA regions
(respectively amino acid translations) of ORFs from the
genome under consideration. For details on such techniques,
the reader is referred to one of the many review papers on the
topic: several of these papers also address the gene identification
problem in eukaryotic organisms (12–17).

Despite the notable success of the methods that have been
developed over the years, each of these two basic strategies has
its own shortcomings. Statistical methods such as those based
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on Markov models can identify coding regions whose statistical
behavior is similar to that of the used training set. If no appropriate
training set is available, one resorts to using sets derived from
database searches, or simply assumes that very long ORFs do
code for genes. The statistics of coding regions often differ
from organism to organism and, ideally, if one wishes to
achieve high prediction ratios using such approaches then one
ought to employ models with organism-dependent parameters.
Essentially, a different Markov model must be built for each
targeted genome. Moreover, short genes (e.g. <60–80 amino
acids) cannot be predicted reliably using statistical methods.
Finally, genes that are statistically distinct from other genes of
the same organism, e.g. genes that are the result of horizontal
transfer (18,19), typically represent challenges for methods
based on statistical schemes.

Unlike statistical methods, similarity-based approaches are
more effective in finding short genes or genes that are statistic-
ally distinct from the majority of the genes in the organism
being studied. The implicit assumption here is that similar
genes or similar proteins are already present in the databases
that are searched. Clearly, there is no dependence on training
sets since no such sets are needed. Problems can arise if the
shared similarity between a candidate gene and its database
counterpart is very low and not detectable. In general,
similarity-based methods have an improved ability to deter-
mine the correct location of genes over statistical methods, a
very desirable property for gene finding tools.

Given that the best characteristics of these two categories
complement one another, genome sequencing projects typ-
ically use representative methods from both categories to
generate results (20).

In what follows, we present a new method which borrows
the best attributes from similarity searches, while at the same
time relying on implicit sequence statistics as in the case of
Markov models. Our method builds on a new paradigm that
describes amino acid sequences with the help of patterns that
are present in these sequences. The patterns are derived by
processing very large public databases of amino acid
sequences with the help of an unsupervised discovery algo-
rithm. It is worth noting that our method does not make any use
of additional evidence, e.g. ribosome-binding sites, in order to
decide the presence, absence and location of genes. Clearly,
incorporating such information provides additional constraints
that can further increase the quality and accuracy of the results
generated by a gene finding algorithm. Nonetheless, in this
first installment of our approach, we have decided against
incorporating such modules. We made this decision because of
our desire to present a clear assessment of our method’s poten-
tial as a generic, alternative scheme to gene finding. We plan to
incorporate such additional modules in follow-up work.

In Methods and Algorithms we describe our approach in
detail. The Experimental Details and Results contains details
on the experimental setup as well as a presentation and analysis
of the results obtained from applying Bio-Dictionary Gene Finder
(BDGF), our algorithm’s implementation, to 17 archaeal and
bacterial genomes. The presentation concludes with a discussion.

METHODS AND ALGORITHMS

In this section, we present methodological details and give
information on the algorithms that we have employed.

Notation and definitions

Let Σ denote the alphabet of all 20 amino acids. When
processing an input dataset containing a collection of strings
from Σ+ with the Teiresias algorithm (21,22), we can
succinctly capture the patterns that can be discovered with the
regular expression Λ(ΛU{‘.’})*Λ where Λ = (ΣU[ΣΣ*Σ]), and
‘.’ is a ‘don’t care’ character which stands for any character in
Σ. In other words, the generated patterns can either be a single
alphabet symbol or strings that begin and end with a symbol or
a bracket with two or more characters, and contain an arbitrary
combination of zero or more residues, brackets with at least
two alphabet characters, and don’t care characters. A bracket
denotes a ‘one of’ choice, i.e. [CPM] denotes exactly one of C,
P or M. Also, a bracket can have a minimum of two alphabet
characters but obviously not more than |Σ| –1.

A pattern t is called an <L,W> pattern with (L ≤ W) if every
substring of t of length W which begins and ends with a literal
comprises L or more positions that are occupied by literals. The
smallest length of an <L,W> pattern is obviously equal to L
whereas its maximum length is unbounded. Any given choice
for the parameters L and W has direct bearing on the degree of
remaining similarity among the instances of the sequence frag-
ments that the pattern captures: the smaller the value of the
ratio L/W, the lower the degree of local similarity. Also associ-
ated with each pattern t is its support which is equal to the
number of t’s instances in the processed input database.
Finally, K denotes the minimum required support and repre-
sents the minimum number of instances that a pattern t must
have before it can be reported.

The Bio-Dictionary

In previous work, we introduced and discussed in detail the
concept of the Bio-Dictionary (23–25). The Bio-Dictionary is
a collection of patterns that we refer to as seqlets (for ‘small
sequences’) and which completely describes and accounts for
the sequence space of natural proteins at the amino acid level.
The seqlets are derived by processing a large public database
of proteins and fragments using the Teiresias algorithm (21,22)
and for an appropriate choice of L, W and K. In Rigoutsos et al.
(23), we described our computation of the Bio-Dictionary from
the GenPept release from February 10, 1999 using L = 6,
W = 15 and K = 2. The processed input contained ∼387 000
sequences amounting to a grand total of ∼120 000 000 amino
acids. The computation resulted in a Bio-Dictionary that at the
time comprised ~26 000 000 seqlets and accounted for (i.e.
covered) 98.12% of the amino acid positions in the processed
input. The reader is referred to that publication for details
regarding the computation, example seqlets with discussion,
and an extensive description of possible applications. Indeed,
the availability of such a complete collection of seqlets permits
one to effectively and successfully tackle a number of tasks
that include similarity searching (26), functional annotation
(25), phylogenetic domain analysis (24), gene identification
and others. Below, we describe gene identification in detail.

The key idea behind dictionary-driven gene finding

As mentioned already, the Bio-Dictionary concept seeks to
substitute a given database of proteins and fragments such as
GenPept or SwissProt/TrEMBL (27) by an equivalent collection
of regular expressions (= seqlets) each of which represents
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combinations of amino acids that appear two or more times in
the processed input. To the extent that the input sequences in
such a public database correspond to a representative sampling
of the sequence space of natural proteins, the seqlets of the
Bio-Dictionary represent an exhaustive collection of intra- and
inter-family signals that are discovered in an unsupervised and
exhaustive manner. Our computation of intra- and inter-family
signals becomes possible due to the fact that during processing
we consider all publicly available sequences without any of the
filtering that one encounters in databases such as PROSITE
(28), Pfam (29) or PRINTS (30) and which is based on the
sequences’ known functional behavior. The properties of the
Teiresias algorithm guarantee that all <L,W> patterns will be
discovered and that they have the maximum possible extent
and specificity.

Two requirements need to be fulfilled for the Bio-Dictionary
approach to be successful in tackling the kinds of problems in
which we are interested. First and foremost, the input to be
processed should be a large and diverse collection of proteins
and fragments [see Rigoutsos et al. (24) for details], a condition
that can be satisfied given the large number of completed and
ongoing genome sequencing projects which contribute to the
public databases. Second, the pattern discovery process should
be able to generate patterns that are specific enough, not
accidental, and account for as much of the processed input as
possible. As we have demonstrated previously (23) this is
indeed possible, thus the second requirement is satisfied as well.

Given this description, our strategy for gene finding should
now be evident. Figure 1 graphically depicts the basic idea.
First, we compute all possible ORFs in each of the three
reading frames and for both the forward and reverse strands of
the given DNA sequence. Clearly, the number of true coding
regions will be a proper subset of this collection of ORFs.

Then, for each ORF we generate its amino acid translation: if
the ORF under consideration is indeed a coding one, then we
should be able to locate instances of many of the Bio-Dictionary’s
seqlets across the span of the ORF’s translation, and vice versa.
If the number of seqlets that we can locate exceeds a predeter-
mined threshold, we report the ORF as a putative gene. We
discuss the details of thresholding below; as a rule of thumb,
the higher the number of Bio-Dictionary seqlets that can be
found in a given ORF, the more likely it is that the ORF is
coding for a gene.

Incorporating a weighting scheme

The basic strategy for gene identification which we just
described is straightforward. It is easy to see that in addition to
the number of seqlets that can be located within the translation
of an ORF, the very composition of these seqlets can have an
impact when deciding whether the ORF codes for a gene. In
general, any two Bio-Dictionary seqlets that match an amino
acid translation affect this final decision differently. One can
think of each seqlet being associated with a specific score: by
summing up the scores of the individual seqlets that match an
ORF, we can compute a quality measure that will allow us to
determine whether to report the ORF as a putative gene or to
discard it. Next, we examine how to appropriately weigh each
of the seqlets.

Let T = {t1,t2,...,tn} be the complete collection of seqlets in
a given Bio-Dictionary. Let us consider the amino acid
translation s of an ORF from a given DNA sequence and let l
be the length of s. We say that a seqlet matches at position j of
the amino acid sequence s if an instance of the seqlet can be
found beginning at the jth location of s. For example,
G..G.GK[ST]TL matches the sequence MTHVLIKGAGGSG-
KSTLAFW beginning at position 8 of the sequence. Let

Figure 1. The basic idea behind our dictionary-driven gene finding method.
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denote the set of those seqlets that match beginning at position
j of s, and let  be the set T\ . Also let Ts = { }
denote the concatenated list of values for all j(1 ≤  j ≤ l).
Similarly, let  T ′s = { } denote the concatenated
list of values for all j(1 ≤  j ≤ l). Note that values for
different js can contain the same seqlet, thus Ts is in general a
multiset. Similarly, T ′s can also be a multiset.

Let pi be the probability that seqlet ti matches a database
protein or fragment at a fixed location, and qi be the probability
that ti matches the amino acid translation of a non-coding ORF
at a fixed location. If all the seqlets in the Bio-Dictionary are
assumed to be statistically independent then the probability
that a given ORF corresponds to an actual gene will be equal to
rPs /[rPs + (1 – r)Qs] where Ps = ,
Qs = , and r is the ratio of ORFs within
the given ORF set that correspond to actual genes.

Let us examine this independence assumption a little further
by considering two specific seqlets that contain don’t care
characters and have several instances in the database from
which they were derived. It is easy to see that because of the
don’t care characters the seqlets can be overlapping and
matching the sequence under consideration (the ‘query’) even
though they are derived from two distinct groups of unrelated
sequences—in such a case, the seqlets cannot really be consid-
ered dependent. Of course, it can also happen that the seqlets
are overlapping and matching the query and they are also
derived from related groups of sequences in the processed
database—in this case, the two seqlets would be dependent.
Frequently though, two seqlets would be dependent only as a
result of a small subset of sequences that is shared by the two
groups of input sequences that gave rise to the two seqlets in
the first place. It is conceivable that one could keep track of
such situations for all groups of seqlets whose instances
overlap within some sequences of the database. Something like
this would of course require exceptionally demanding book-
keeping (in terms of required space and time) and would make
the application of our approach prohibitive for problems of
practical size. It should be clear that the combinations of
seqlets that ought to be considered dependent due to overlaps
of some of their database instances are substantially fewer than
the combinations of seqlets that are independent. Moreover, a
given amino acid position of the query is typically ‘covered’ by
5–10 seqlets, a small number compared with the total number
of seqlets that will match somewhere within it. Thus, any
seqlet dependence that manifests itself in the outlined gene
finding process will involve only a small number of seqlets
each time and only because of a small fraction of the total
number of their instances in the database from which they were
originally derived. Consequently, the assumption of independ-
ence is a reasonable simplifying approximation that also
allows for speedy computations and, as evidenced by the
results we present in the next section, does not have any notice-
able adverse impact on our results.

We can use the ratio Rs = Ps/Qs to determine the likelihood
that a candidate ORF corresponds to a gene. Note that the
probability will be >0.5 if Rs > 1 and r = 0.5. Let N = (1
– pi) and N′ = (1 – qi). N denotes the probability that no
seqlet matches at a fixed position of an actual protein, and N′
the probability that no seqlet matches at a fixed position of the
amino acid translation derived from a non-coding ORF. Recall
that the Bio-Dictionary is derived from a database of proteins

and fragments, thus N is smaller than N′ in most cases. Consid-
ering that the number of seqlets that match at a given position
is much smaller than the number of seqlets not matching at the
same position, and that the pis and qis are very small
numbers, we can approximate the terms and

by Nl and N′l respectively. Thus we can use Rs′
= (Ps′/Qs′)(N/N′)l instead of Rs, where Ps′ = and Qs′
= . Note that if N ∼ N′, we can use  = P′s/Q′s instead
of .

By definition, ORFs do not contain any stop codons intern-
ally, and consequently long ORF-like stretches are not likely to
be random. Let L denote the probability that a stop codon is
observed at a fixed position of a random DNA sequence. Since
there exist three stop codons among the 64 possible codons and
assuming that all four possible nucleotides appear with equal
probability in the random sequence, then L is equal to 3/64.
With this in mind, we can use Rs′′′ = R′/(1 – L)l = (Ps′/Qs′)Ml

where M = N/N′(1 – L) instead of Rs′. If M ∼ 1, we can use
Rs′′ = Ps′/Qs′ instead of Rs″′.

Let wi = log pi – log qi be the weight associated with seqlet ti.
Let us also consider the sum of weights of the seqlets matching
anywhere in the translation s of an ORF as the measure Ws that
is characteristic of the coding quality of the ORF under consid-
eration. It is easy to see that we can write the following
equation for the coding quality measure of an ORF:

 = log Rs′′. If M cannot be
ignored, we can instead use the following expression: W′s = Ws
+ l × log M = log Rs′′′ to define the coding quality of an ORF.
In actuality, the value of l × log M is far smaller than the value
of Ws, and we can safely ignore the term during the actual
computations.

At times, we are faced with a situation where we have
multiple start codons matching the same stop codon and must
decide which start/stop pair to report. Our solution amounts to
picking the start codon that will result in the highest value for
the coding quality measure. Due to the fact that seqlets can also
have negative associated weights, and even if we ignore the log
M term, it should be evident that selecting the start codon in
such a way will not necessarily result in the reporting of the
longest ORF as coding.

On a related note, ATG is the most frequently used start
codon but it is not the only one. Consequently, it is inappro-
priate to treat the different start codons in a uniform manner.
Let {c1,c2,...,ck} denote the set of possible start codons. Let fi be
the probability that ci is the start codon of a randomly chosen
coding region, f ′i be the probability that ci is observed in non-
coding regions, and gi be log fi – log f ′i. We can then use Ws +
gi instead of Ws as the measure of coding quality for the amino
acid translation s of an ORF that is initiated by the start codon ci.

In order to compute the coding quality measure, we need the
values for pis and qis. The most natural way to obtain these
values is to compute them with the help of actual genes and
non-coding ORFs. We can calculate the actual seqlet occur-
rences in the regions annotated as coding in a given training set
and derive the needed pi values; we can then compute each
seqlet’s occurrences in ORFs that are not designated as coding
in a training set and derive the qi values. The values for the fis
and f ′is can be computed in a similar manner.

But how can these values be obtained in the absence of a
training set? For the pis we can use the probabilities computed
with the help of the protein database from which the
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Bio-Dictionary is derived. Alternatively, we can compute them
using very long ORFs instead of actual coding regions. For the
qis we can use non-ORF regions, or we can estimate the
probability of random occurrence based on an appropriately
chosen amino acid bias.

Once we have attached a corresponding coding-quality
measure to each ORF we can decide which ORFs correspond
to putative genes by appropriately setting a threshold value.
The higher the value of the measure we associate with a given
ORF the more likely it is that the ORF is a coding one.

Removing encapsulated genes coded in different frames

Sometimes one encounters ORFs whose span completely
encapsulates other ORFs in one or more of the remaining five
reading frames. Occasionally, our method will give comp-
arable, high scores to a pair of ORFs where one of the ORFs
completely includes the other. It is believed that not both
members of such pairs of coding regions can correspond to
actual genes. In these situations, we use the ORF score to sub-
select, and report the one with the higher score. Note that most
of the time, the ORFs selected and reported in this manner
correspond to the longer member of the pair. A similar
approach is also employed by Glimmer (2).

Matching seqlets to a sequence of amino acids

The Bio-Dictionary we use in our experiments contains
∼30 000 000 seqlets (see the following section for more
details). All of these seqlets need to be checked against a large
number of amino acid translations from all ORFs on both
strands of a given complete genome. It is thus important that
this operation be carried out as efficiently as possible so as to
reduce the overall computational requirements of our method.
There exist many efficient linear-time algorithms for searching
exact strings (31), but since seqlets include don’t care charac-
ters these algorithms are not applicable here. In this section, we
present and discuss two algorithms for quickly determining
whether a seqlet matches a given amino acid sequence. We can
address this problem in one of two generic ways: we can either
preprocess the amino acid sequence, or we can preprocess the
Bio-Dictionary seqlets with which we will be searching.

Most of the work that has appeared in the literature revolved
around the preprocessing of the sequence which is assumed to
be fixed (31). Moreover, the number of patterns whose
instances were sought in the sequence was substantially
smaller than the collection of patterns we are interested in.

Note that in our work, the set of seqlets is fixed, known in
advance and very large. On the other hand, the amino acid
sequences that we need to examine are numerous and not
known in advance. Moreover, the average length of such a
query sequence is just several hundred amino acids. It thus
appears more effective to preprocess the contents of the
Bio-Dictionary. One approach would be to build hash indices
out of seqlets so as to reduce the number of seqlets that need to
be examined at each position of the amino acid sequence;
however, it is not immediately clear how to build such indices
for patterns that have variable numbers of don’t care characters
as is the case of the seqlets.

Similarly to what is done in traditional dictionary searches
without don’t care characters, we can build the index with the
help of the first few characters of a seqlet. For example, the
seqlet G..G.GK[ST]TL could be indexed through G..G if we

consider indices that are built using the first four characters of
the seqlet. If one of the positions used to build the index is
occupied by a bracket expression like [ST] it is much simpler
to replace the contents of that position by a don’t care
character. This method is rather effective and can in fact be
improved further. In the case of G..G.GK[ST]TL, it would
seem more appropriate to use one of GK.T or K.TL as the
seqlet’s four-character-induced index instead of the first char-
acters G..G. Since GK.T and K.TL contain fewer don’t care
characters, they should generally appear fewer times than G..G
in an arbitrary protein.

Keeping these observations in mind, we next propose a novel
effective scheme for generating indices out of seqlets. Let us
define an (l,w) subpattern of a seqlet t as follows: first, we
replace all brackets in the seqlet by don’t care characters and
let t′ denote the modified seqlet. The (l,w) subpattern is a
minimal substring of t′ such that its length is less than w and it
contains l characters that are not don’t care characters. Notice
that we cannot always find such (l,w) subpatterns; if one such
subpattern exists, we select it and form the index for t. If such
a subpattern does not exist we find the largest value l′ such that
an (l′,w) subpattern exists in t′ and use this subpattern to form
the seqlet’s index: for example, GK.T is a (3,4) subpattern of
G..G.GK[ST]TL.

If a seqlet t is indexed by an (l,w) subpattern, we have to
check this seqlet approximately n/|Σ|l times when we consider
a random protein of length n that has uniform amino acid bias.
We can of course reduce searching time by setting l to a large
value. But, at each position, we must examine patterns that are
indexed by any of  possible (l′,w) subpatterns for all l′ ≤ l.
The total number of patterns to be checked at any one position
is thus O(2w); if we set w and l to large values, the search will
be slow. In the section entitled ‘Performance of the seqlet
search scheme’ we will describe how to choose appropriate
values for l and w. Note that if there exist seqlets without any fixed
character (e.g. [LK]..[ST][GKT]..[AERST][ELK]..[AVL]) we
must check them at each position in addition to the seqlets
hashed by subpatterns as above.

If we know the frequency of appearance of individual amino
acids in query sequences, we can use it to estimate the prob-
ability of appearance for each subpattern. In our case, we can
use it to further improve the performance. For example, in the
case of G..G.GK[ST]TL, if we know that the amino acid G
appears less frequently than the amino acid L, we can assume
that GK.T is also rarer than K.TL, and thus we should hash the
seqlet with the help of GK.T. There can be cases where some
(l′,w) subpattern is estimated to be less frequent than an (l,w)
subpattern although l′ < l. In such cases, we should use the
former, more rare subpattern. We can easily search for such a
subpattern in time that is linear to the size of the seqlet. In the
experiments below, and for given values of l and w, we use as
a hash index the least frequent (l′,w) subpattern, with l′ ≤ l, as
can be estimated from a given known amino acid bias.

EXPERIMENTAL DETAILS AND RESULTS

In this section, we describe and report on the results we
obtained with BDGF, the implementation of our gene-finding
algorithm. BDGF was applied to several complete archaeal and
bacterial genomes. We begin by describing the building of the
Bio-Dictionary that we use and the parameter choices for our

Cl ′ 1–
w 1–
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search scheme that determines possible matches of a given
seqlet in the amino acid translation of an ORF.

Generation of the Bio-Dictionary

With the help of the Teiresias algorithm (21,22), we computed
an instance of the Bio-Dictionary for the June 12, 2000 release
of the SwissProt/TrEMBL (27) database. The processing was
carried in the manner that is outlined in Rigoutsos et al. (23).
As a matter of fact, we used Teiresias with a setting of L = 6,
W = 15 and K = 2. The justification for this choice of values for
L and W is the result of earlier extensive analysis and was
described previously (26). The Bio-Dictionary that resulted
from this processing contained 29 397 880 seqlets. The
instances of these seqlets accounted for 98.10% of the amino
acid positions in the processed database. It is this collection
that we used in our experiments.

It should be noted that the SwissProt/TrEMBL release that
we used to build our Bio-Dictionary is >1.5 years old and
chronologically preceded the releases of some of the test
genomes that we processed for our experiments. This was an
intentional choice on our part and was meant to demonstrate
our method’s generality and ability to extrapolate.

Some of the seqlets in the employed Bio-Dictionary have
rather long spans. These are typically important patterns,
generated by putative proteins that are coded by genes in
distinct genomes from the same phylogenetic domain. Because
these patterns appear infrequently, it is difficult to compute
their weights in the absence of an extraordinarily large training
set. For our experiments, we handle this situation as follows:
we replace seqlets that have k fixed characters by k – s + 1
seqlets each of which contained s fixed characters, for some
choice of the value s (see below). Let S{i..j} denote a
subpattern of a seqlet S that starts at the ith fixed character and
ends at the jth fixed character. We replace S by subpatterns
S{1..s}, S{2..s + 1},...,S{k – s + 1..k}. Any duplicate seqlets
that appear in the resulting collection are removed before
further processing. Heretofore, and for simplicity purposes, we
will use the shorthand notation BD-i to refer to the derived
pattern collections that are constructed as above by setting s to
i. The collections that we used in our experiments were BD-4 and
BD-6.

Table 1 shows statistics for collections BD-i with i assuming
values between 2 and 6 inclusive. In particular, for each BD-i
the table lists the following items: (i) the number of seqlet-
derived patterns contained in BD-i—as expected, and because
identical patterns are removed after splitting, the number is
small for small values of i; and (ii) the average numbers of
instances of a derived pattern per 1 000 000 amino acids,
computed from experiments against coding sequences (column 3)
and non-coding sequences (column 4) from the 17 genomes
we used for our experiments—as expected, the number of
instances is much higher in coding sequences than in non-
coding ones.

The total lengths for the coding and non-coding sequence
sets for the 17 genomes that we used in our experiments are
∼30 and ∼94 Mb respectively (note that the seemingly large
sizes of theses datasets are due to the existence of six reading
frames). If we make use of all 17 organisms for training, the
corresponding coding and non-coding sequence sets have
sufficiently large sizes to permit the computation of representative

weights, even for the patterns in the BD-6 collection. On the
other hand, if only one or a handful of genomes are available,
the corresponding sizes for these two sets are not substantial to
permit the generation of representative weights for the BD-5
and BD-6 collections. Thus, a given choice for the training set
indirectly dictates which collections BD-i can be used to carry
out any planned gene finding experiments.

Performance of the seqlet search scheme

As we have already mentioned, it is important that we be able
to quickly determine which of the seqlets of the Bio-Dictionary
are contained in the amino acid translation of a given ORF. To
this end, we present experimental results on the performance of
the search scheme that we described in the previous section,
and for different combinations of the parameters l and w.

For the purposes of benchmarking the method’s perform-
ance, we used the (i) original unmodified Bio-Dictionary that
contained 29 397 880 patterns and (ii) 100 proteins from
Escherichia coli as queries. The average span of the seqlets in
this Bio-Dictionary is 13.15 positions whereas the average
number of fixed characters in these seqlets is 7.41. The average
length of the 100 query proteins is 340.61 with the shortest and
longest sequences having lengths of 21 and 1073 amino acids
respectively. The goal of the experiment is to find all the
Bio-Dictionary seqlets that have instances in the 100 query
proteins. As it turns out, a total of 302 349 Bio-Dictionary
seqlets appear in the cumulative collection of 100 proteins,
with each amino acid position participating in the instances of
8.88 distinct seqlets, on average.

Table 2 shows the computation time required to determine
all these matches and for the parameters l and w assuming
values in the range 2 ≤ l ≤ 10, 2 ≤w ≤ 15 (l ≤  w). All of the
experiments are carried out on a single IBM RS64III processor
with a clock speed of 450 MHz. For these experiments, we
constructed a hash index assuming an amino acid bias that
results from a uniformly distributed random sequence of
nucleotides. The best performance is obtained when l = 5 and
w = 11: with these settings, we can process a 500 amino acid
query and determine the subset of the Bio-Dictionary’s
∼30 000 000 seqlets that have instances in the query in ∼1 s.

Table S1 (Supplementary Material) shows the average
number of seqlets that are examined for instances in the query
sequence. Note that only a subset of the Bio-Dictionary’s
seqlets will actually match somewhere in the query. As antici-
pated, the number of seqlets that need to be examined
decreases as l and w grow larger, an expected result. Also, the
search time does not decrease when l >5 or w >11. The

Table 1. Statistics for the seqlet-derived pattern collections used in our 
experiments

See text for additional discussion.
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explanation can be found in Table S2 (see Supplementary
Material) where we show the maximum number of subpatterns
that need to be checked at each position of a given protein: this
number increases as l and w increase. As a matter of fact, the
actual search times are roughly proportional to 1.6 × x + y,
where x is the number of the checked subpatterns at each posi-
tion and y is the average number of the actually checked seqlets
at each position. Note that x is sometimes larger than y because
subpatterns exist that must be checked but for which no seqlet
has been hashed. We can easily compute the expected number
of checked seqlets against random sequences with a given
amino acid bias, and thus can estimate appropriate values for l
and w in this manner.

For completeness purposes, we also carried out experiments
where we searched using hash keys derived from the prefixes
of seqlets. The results are shown in Table S3 (see Supplementary
Material), for various values of the prefix length. This scheme
does not perform as well as our (l,w)-based hashing scheme
and the best result of 237 s that is obtained for a prefix length

of 11 is far too slow to be useful; thus, we abandoned this
prefix scheme idea.

Gene finding results on archaeal and bacterial genomes

In this section, we outline and discuss the capabilities of our
gene-finding method by reporting the results we obtain from
processing 17 complete genomes with BDGF.

Genome identities. Of the 17 genomes we used in our
experiments, four were archaeal (Archaeoglobus fulgidus,
Methanococcus jannaschii, Methanobacterium thermoauto-
trophicum and Pyrococcus abyssi) whereas the remaining 13
were bacterial. Table 3 shows relevant information for these
genomes including the genome length in nucleotides, the
number of all identifiable ORFs that are >18 nt (i.e. six
amino acids), and the number of annotated coding regions
that have been reported in the public databases for each
genome. We should mention at this point that each of these
genomes may contain additional actual coding regions that to
date have remained unreported. Also, one should not lose sight

Table 2. Sample search times (in s) using (l,w)-subpattern-based indexing and for various choices of l and w

See text for additional details.

Table 3. Details of the 17 genomes used in our experiments
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of the fact that the annotated (= reported) coding regions are
for the most part putative and have typically been reported
without verification via wet laboratory experiments.

Quantifying the quality of our predictions. There exist several
ways in which one can evaluate the performance of a gene
finding algorithm. But the algorithm’s sensitivity and
specificity remain the most important measures. Sensitivity,
often referred to as the prediction rate, is defined as the ratio of
the number of genes predicted by the algorithm over the
number of genes that have been reported in the public
databases. Specificity is defined as the ratio of the number of
predicted genes that are also reported in the public databases
over the number of all genes that the algorithm has predicted..

Clearly, one can generate very appealing, large values for the
sensitivity of the algorithm simply by lowering the employed
decision thresholds. But this is typically done at the expense of
introducing false positives in the output which will in turn lead
to decreased values for specificity. The opposite situation is
also possible: one can choose thresholds in a way that will
result in high specificity values at the expense of sensitivity;
i.e. many actual genes will not be reported. Sensitivity and
specificity are competing goals and, ideally, any proposed
algorithm must aim at achieving simultaneous high values for
both of these measures.. In addition to an algorithm’s specifi-
city and sensitivity, also of interest is the cardinality of the
collection of genes that have been predicted by the algorithm
and satisfy the following two conditions: (i) the predicted
genes are not among the genes that have been reported in the
public databases; and (ii) the predicted genes have substantial
similarity to one or more protein/cDNA sequences contained
in the public repositories. Naturally, this collection forms a
subset of the results that would otherwise be characterized as
‘false positives’.

The existence of genes in several distinct genomes that also
exhibit similarity to a gene predicted by a given algorithm adds
support to the hypothesis that this gene is indeed correctly
predicted. In what follows we use the term ‘hits’ to refer to the
members of the special subset of predicted genes that also
satisfy conditions (i) and (ii) above. In our experiments, we
determined whether a predicted gene satisfied condition (ii) by
using both the FASTA (32) and the BLAST (33) algorithms:
with default threshold and matrix settings we carried our simi-
larity searches against the release of SwissProt/TrEMBL (27)
from September 21, 2001. A query was considered to generate
a hit in the searched database if one or more of the reported
results had associated E(.) values that were ≤1.0e–4 for
FASTA and 1.0e–3 for BLASTP (these specific threshold
values were recommended by one of the reviewers). In add-
ition to running FASTA and BLAST, we carried out a CD
search for conserved domains using rpsblast and the
Conserved Domain Database from February 28, 2002 (34): the
E(.) value threshold we used here was equal to 1.0e–4.

In all cases that are described below, we quantified the
performance of our approach by simultaneously reporting the
values of the following three measures: ‘sensitivity,’ ‘specificity’
and ‘hits’.

How we built and used our training and test sets. As we
explained previously, an appropriate training set is needed in

order to compute weights for all the seqlets in the Bio-
Dictionary. The experiments that we carried out and whose
results are presented in detail in the section entitled ‘Prediction
results on the various genomes’ were meant to mimic the very
wide spectrum of situations that a researcher may encounter in
a real-world setting.

First, we divided each genome into two equal-length parts:
we used the second half of the genome as a training set and the
first half as a test set (case 1). In spirit, this is a test similar to
what has been previously reported in the literature (2,5).
However, it should be stressed that what we use in this case to
derive weights for our seqlets is a mere 50% of a genome
whereas we test our prediction capability on the remaining
50% of it. The size of the training set we use in this set of
experiments is much smaller than what has been typically
employed to train previously reported methods. This was an
intentional decision meant to showcase our system’s capabilities.

We also carried out experiments without using any a priori
knowledge for the training sets. This is discussed in detail in case
2 below. The purpose of these experiments was to determine how
well our algorithm works in the absence of such information.

The next group of experiments (cases 3a and 3b) was
designed to examine the performance of our method in the case
where the seqlets’ weights were not genome specific. For each
test genome, we derived weights for the seqlets by training
with a collection of several complete genomes that did not
include the genome under consideration; we then applied our
method on this test genome. These jack-knifing experiments
are typically too severe for statistical methods such as those
based on Markov models. It is for this reason that many web
implementations of previously reported, statistics-based
methods often provide several parameter settings derived from
training on various genomes: users are asked to select the
appropriate settings to be used by the algorithm. The experi-
ments for cases 3a and 3b were carried out using BD-4, i.e. the
derived pattern collection was constructed by setting the
parameter s to 4 (see section ‘Generation of the Bio-Dictionary’).

In order to determine the impact of the different pattern
collections on the results, we repeated the experiments of cases
3a and 3b using BD-6, i.e. the collection constructed by setting the
parameter s to 6. Cases 4a and 4b correspond to this set of experi-
ments and are the counterparts of cases 3a and 3b respectively.

Finally, for our last group of experiments (case 5) we used
all 17 genomes to assign weights to the seqlets, then tested the
resulting non-genome-specific system by processing each of
the genomes in turn.

As we noted in the Introduction, in this first incarnation of
our system we do not make use of any additional information
(e.g. promoter information that can either be computed or
retrieved from the public databases) to constrain the discovery
of genes and start sites. Nonetheless, as evidenced by the
results that we report in cases 4 and 5 (see section ‘Prediction
results on the various genomes’), our start site prediction rates
are comparable in quality, and at times superior to those that
have been previously reported in the literature (5,35–37). What
is more, our results are achieved using a system that is generic
and not genome specific. We will revisit the topic of start-site
prediction at the end of this section.

Format of the reported results. In the tables that follow, and for
each processed genome, we report the total number of genes
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predicted by our algorithm in column 2; we also indicate how
many of these genes are <300 nt in column 3. In our studies, we
threshold at that score value for which the number of predicted
genes is equal to the number of annotated genes in the public
databases—clearly this threshold value is different for each
genome. Note that in this case, the exhibited sensitivity and
specificity are equal; this common value is shown in column 4.
For a subset of the genes that are predicted by our algorithm
there is no corresponding database entry characterizing them
as such. Column 5 shows how many of the predicted genes fall
into this category, whereas column 6 indicates how many of
these genes are <300 nt. With the help of FASTA, BLAST and
CD-search we report how many of these genes are in fact hits
(recall the definition from section ‘Quantifying the quality of
our predictions’) in columns 7, 9 and 11 respectively; the
number of hits which correspond to gene predictions that are
<300 nt is listed in columns 8, 10 and 12 respectively. Finally,
in each of the result tables we also report on our ability to
correctly predict the start sites for the reported genes through
comparison with the existing database annotations. In column
13, we show the number of genes whose start site is correctly
predicted; and in column 14 we list the same figure as a
percentage of reported genes.

Prediction results on the various genomes. We now report on
the results of our method in five experimental settings. The
experiments were designed so as to mimic the type of
situations that a real-world researcher is likely to encounter,
and showcase the performance of our approach across a wide
spectrum of settings.

Case 1. BD-4 and weights derived from the second half of
each genome only. BD-4 was used in this case. For each
genome, the seqlets’ weights were obtained by training on the
second half of the genome. Gene prediction was carried out on
the first half. Table S4 (see Supplementary Material) shows the
results for this experiment: in all 17 cases, the sensitivity/
specificity value ranged between 90.1 and 95.1%. Also, ∼33%
of the additional putative genes reported by our method corre-
sponded to hits, i.e. we could find statistically significant simi-
larities with proteins in the September 21, 2001 installment of
the SwissProt/TrEMBL database. The implication of this is
that the actual gene prediction rate is likely to be even higher
than what we report here. With respect to the start site predic-
tion rate, the rates of correctly predicted start sites in this case
range from 55.6 to 84.2%. Recall that we currently make no
use of any promoter information.

Case 2. BD-4 and weights derived from using long ORFs
only. The previous experiment assumes the availability of
annotations for at least some of the actual coding genes of a
target genome. But what if such information is not available?
In such a situation the only recourse is to derive the seqlet
weights by restricting ourselves to the very long ORFs that can
be identified in the genome which is being processed; the
implicit assumption here is that long ORFs are more likely than
short ORFs to be coding for genes and can thus be used as
training sets. Similar heuristics have been employed by other
groups as well (2,38).

In this case, we used as a training set for the coding regions
all the ORFs that were >600 nt and which were not included
within other longer ORFs. As a training set for the non-coding
regions we used all the ORFs that were <200 nt and which

occasionally (and incorrectly) include bona fide coding ORFs.
We again used BD-4 as the collection of patterns for which to
derive weights. As will become evident after we have
described our complete set of experiments, it is not necessary
to carry out this kind of training when dealing with a new
genome—we have simply included case 2 for the purpose of
completeness of description.

Table S5 (see Supplementary Material) shows the results of
this experiment. In this case, the sensitivity and specificity
value ranged from 89.9 to 95.6%. Similarly to case 1, ∼32% of
the additional predicted genes have significant similarities with
other database entries. It is notable that despite the fact that the
amount of information we used for training purposes was
substantially less than that we used in case 1, the performance
levels remained essentially unchanged.

Case 3a. BD-4 and weights derived from fixed 4 of 17
genomes (leave-many-out). Another realistic situation is the
one where users will carry out gene prediction on newly
sequenced genomes for which little or no information is yet
available. The situation can be facilitated if a phylogenetically
similar genome already exists in the public databases but this is
not always going to be the case. This particular experiment is
meant to simulate the situation where the genomes that are
already available in the public databases are few and rather
distant from the ones that are being examined. To this end, we
used the union of the full CDS lists that were reported for
Bacillus subtilis, Campylobacter jejuni, Helicobacter pylori
and Rickettsia prowazekii to derive the weights for BD-4’s
patterns and subsequently tested our method by predicting
genes for the remaining 13 genomes of our genome collection.

Case 3b. BD-4 and weights derived from 16 of 17 genomes
(jack-knifing or leave-one-out). Here we study the jack-knife
variation of case 3a: prior to carrying out gene prediction for
each of the 17 genomes of the collection, we used the union of
the full CDS lists from the remaining 16 genomes to derive the
weights for BD-4’s patterns.

Tables S6 (see Supplementary Material) and 4 show the
results for cases 3a and 3b, respectively. As one would intuitively
expect, the weights that are derived from 16 genomes are more
representative (case 3b). Consequently, the prediction rates
reported in Table 4 are superior to those reported in Table S6.
The sensitivity/specificity value was in the range of 86.3–94.7%,
exceeding the 90% mark for the majority of the genomes.
Approximately 23% of the additional putative genes reported
by our algorithm correspond to hits.

This set of experiments (i.e. cases 3a and 3b) is particularly
interesting in light of observations made previously in the litera-
ture according to which the performance of statistical methods
typically deteriorates if the method is used with parameters
derived from a phylogenetically distant genome. This deterio-
ration reflects merely the overall difference in the statistical
properties of the respective genomes.

Unlike statistical approaches, our method depends largely on
the statistical properties of verified and putative proteins and
exhibits resilience to statistical variability. Thus, the conclu-
sion of this set of experiments is that if the weights of the
seqlets have been appropriately derived we expect to be able to
reach very high prediction levels in a manner that will be
relatively independent of the studied organism. This is indeed
corroborated by the results shown in Tables S6 and 4.
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Case 4a. BD-6 and weights derived from fixed 4 of 17
genomes (leave-many-out). In this experiment, we repeat the
experiment of case 3a but now using the BD-6 collection. In
general, with smaller values for s one expects that the derived
collection of patterns will be more sensitive but will capture
less ‘structure’. On the other hand, larger s values will give rise
to a situation where potentially fewer seqlets match the puta-
tive amino acid translations and there is an associated
increased difficulty to appropriately compute the seqlets’
weights. Table 5 shows the results of this experiment.

Case 4b. BD-6 and weights derived from 16 of 17 genomes
(jack-knifing). Here we repeat the experiment of case 3b but
this time using the seqlets from the BD-6 collection: results are
shown in Table 6.

When we compare the results from cases 3a/3b with those
from cases 4a/4b we conclude that for most of the genomes in

our collection, and for the training carried out as described
above, the BD-4 collection will result in better performance; a
notable exception is represented by the Chlamydophila and
Chlamydia species for which BD-6 gives better results.

An additional observation is that the number of genomes for
which BD-6 performs better than BD-4 increases as the size of
the training set increases. The very important ramification of
this is that, if we have access to a rather large training set, our
method will exhibit better prediction performance when used
in conjunction with BD-s sets corresponding to larger s values.

Case 5. BD-6 and weights derived from all 17 genomes. The
four experimental cases above provided sufficient information
that permitted us to generate optimal results with our method.
In particular, (i) we should use the BD-6 collection since it is
bound to perform better than BD-4 as more and more informa-
tion is deposited in the public databases; and (ii) during

Table 4. Gene prediction results for case 3b

BD-4 was used and the weights were derived from training using the remaining 16 genomes (‘jack-knifing’ or
‘leave-one-out’ scenario).

Table 5. Gene prediction results for case 4a

Unlike case 3a, we used BD-6 and the weights were derived from training using only four of the 17 genomes
(‘leave-many-out’ scenario). The four genomes that were used for training were: Bacillus subtilis, Campylobacter jejuni,
Helicobacter pylori and Rickettsia prowazekii.
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training, the weights should be derived from all of the previ-
ously published coding/non-coding information for all avail-
able genomes. With these two observations at hand, we carry
out this last set of experiments noting that it is indicative of the
levels of prediction quality we can expect when we use a good
training set, i.e. one derived from many complete genomes.

The results for this experiment are shown in Table 7. The
achieved sensitivity/specificity value is in the 93.9–97.0%
range with most of the genomes exceeding the 95% mark.
Invariably, and similarly to all of the above experiments, a
substantial percentage of the additional putative genes that our
method reports correspond to hits, i.e. they can be corroborated
with the help of sequence similarities to entries in the public
databases.

Another very notable result that is reported in Table 7 has to
do with our ability to correctly predict the start sites of genes.
As can be seen, the ratio of correctly predicted start sites ranges
between 80 and 90% across almost all studied genomes. More
importantly, this ratio is achieved simultaneously with very
high specificity and sensitivity values and without making use
of any promoter information.

We conclude by stressing a very important point: our method
derives and uses a single set of weights for the seqlets in the
Bio-Dictionary and these weights are not genome specific.

On the prediction of start sites. As we mentioned already, the
accurate prediction of start codon sites is a notoriously difficult
problem. To derive the various ratios for our experiments, we

Table 6. Gene prediction results for case 4b 

Unlike case 3b, we used BD-6 and the weights were derived from training using the remaining 16 genomes (‘jack-
knifing’ or ‘leave-one-out’ scenario).

Table 7. Gene prediction results for case 5

This is the optimal setting where we used BD-6 and the weights were derived from training using all 17 genomes.
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made use of the gene starts that are reported in the annotated
database entries for each processed genome. Although this
kind of information is generally correct, errors are known to
exist. Thus, we also carried out a verification step of our start
site prediction rates using experimentally validated genes. In
particular, we focused on the 1248 experimentally validated
genes from B.subtilis (36) and computed the ratio of start sites
that were correctly predicted by our algorithm when using the
pattern collections and weights described in cases 4b and 5
above [in other words, we used the BD-6 collection of patterns
with weights derived from (i) jack-knifing and (ii) optimal
computations from all 17 genomes]. Of the 1248 genes, we
correctly determined the start sites for 797 (case 4b) and 898
genes (case 5) respectively, or 63.9 and 72.0% of the processed
set respectively. These numbers closely match the corres-
ponding entries for the entire B.subtilis genome in Tables 6
(case 4b) and 7 (case 5) respectively; in fact, they are slightly
higher than what is listed in these tables. This verification lends
more support to the correctness of our start site predictions.

We conclude the discussion on start sites by noting that our
gene prediction algorithm can also be used for start site local-
ization. In Figure 2 we show a graph that depicts for each
position i in the neighborhood of an E.coli coding sequence the
local sum of the weights for the seqlets that match starting at
position i. To obtain the cumulative score corresponding to
position i, the local sums from i through the stop codon position
must be added together. The seqlet weights used here are the

ones from case 5 above and correspond to what we consider to
be an optimal setting. The true start site of the coding region as
well as alternative start sites are shown in this plot. Note how
the local sum of the seqlets’ weights is very low just prior to
the true start codon then ‘jumps’ abruptly to a much higher
value immediately after it. These score jumps can be exploited
to predict the start sites of predicted genes. And as the results
for case 5 have shown, we can achieve high ratios of correct
start site prediction simultaneously with high levels of specificity
and sensitivity. We are in the process of incorporating information
from promoter regions to our system and expect that the overall
prediction capability of our method will improve further.

Some notes on the quality of our ‘additional gene’ predictions.
In order to demonstrate that our approach does make a tangible
advance to the gene finding problem, we discuss next two
specific examples.

The first example comes from the processing of the Haemophilus
influenzae genome with BDGF. One of the ORFs that we
predict is found on the reverse strand of the genome in the
region 1476557..1477183; the alleged corresponding gene
product is 206 amino acids long. Quick analysis shows that this
sequence is essentially identical to PSTB_ECOLI, a phosphate
transport, atp-binding protein from E.coli. The following
MUSCA-derived (39) alignment shows the similarity—
conserved amino acids have been colored based on their
hydropathy (Scheme 1).

The ability of our method to correctly identify and report this
particular gene is very important for the following reason: until
the late part of 2001 the list of genes and their positions in the
genome that accompanied the GenBank entry for H.influenzae
included no gene prediction for this region (recall that the input
database out of which we build our pattern collection dates
back to June 12, 2000) (Scheme 2).

The proteins pstS, pstC, pstA and pstB constitute an intra-
membrane complex that acts as a high-affinity transport
system for inorganic phosphates. This system permits the
transport of the phosphates through the inner membrane and
into the cell. The four proteins pstS, pstC, pstA and pstB form
an operon; similarly, phoR and phoB form a second, regulatory
operon. The expression of the genes in these two operons is
controlled by the level of inorganic phosphates in the cell.

Note that the gene that we predicted is coded by the same
strand (= reverse) as the remaining components of the two
operons. Moreover, the localization and hypothesized identity

Figure 2. Example of start site prediction using a coding sequence from
E.coli—see text for more details.

Scheme 1.
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for our predicted gene are further supported by the fact that
all the members of these two operons are present, appear in
the same order, and have been reported in the genome of
Pastereulla multocida; in fact, the relevant segment of the list

of the predicted genes for P.multocida reads as in Scheme 3.
As can be seen, in the P.multocida instance of the two operons,
the gene that codes for pstB is located between the genes
coding for phoB and pstA, similarly to the H.influenzae genome.

Scheme 2.

Scheme 3.

Scheme 4.

Scheme 5.
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The entry for pstB was added to the list of H.influenzae
genes prior to the October 19, 2001 update of the Entrez entry
for this genome. The value of this example lies in showcasing
our ability to make a correct gene prediction for H.influenzae
as early as June 12, 2000, i.e. the date on which we compiled
the knowledge base that was used to derive our patterns. With
time, the database from which we build our pattern collection
will increase in size and become more rich further improving
our gene prediction ability.

Our second example comes from the genome of A.fulgidus.
One of our gene predictions involves an ORF that appears on
the reverse strand in region 282847..284262; based on the list
of genes that were reported with the original GenBank submission
of A.fulgidus, this particular region is gene-empty (Scheme 4).

A straightforward analysis reveals the existence of a
hypothetical protein, Q9PEZ3, in Xylella fastidiosa which
shares extensive similarities with our predicted gene. A Clus-
talW (40) alignment between our predicted gene and Q9PEZ3
is shown in Scheme 5.

The very high degree of similarity and the fact that the
corresponding involved organisms belong to distinct phylo-
genetic domains (archaea and bacteria respectively) provides
strong support for the correctness of this gene prediction.

Web server for this gene finding algorithm. BDGF, the
implementation of our gene finding algorithm, has been made
available via the World Wide Web. The implementation uses
the patterns of the BD-6 collection and optimal weight settings

derived from 17 genomes. The server can be accessed by
visiting the URL http://cbcsrv.watson.ibm.com/Tgi.html and is
operational around the clock; the server runs on a single IBM
RS64III processor with a 450 MHz clock, and can process
250 000 nt in all six reading frames in a little over 60 s. Upon
completion of the computation, the results are presented to the
user via a graphical user interface an instance of which is
shown in Figure 3. The predicted genes are color-coded
depending on the score they have been assigned. The interface
allows the user to navigate around the processed DNA
sequence and to zoom in/out of the regions of interest. Once an
ORF has been selected with the help of the mouse, its location
on the processed sequence is reported together with its nucle-
otide composition, length and amino acid translation. The
amino acid translation of a selected ORF can be annotated
interactively. Also, the minimum length of an ORF that will be
reported is controlled by the user: its default value is 50 amino
acids (i.e. 150 nt). The complete list of ORFs that have been
predicted by BDGF together with their position, length and
associated score can also be downloaded from the same page.

DISCUSSION AND CONCLUSION

In this paper, we described a new method for solving the gene
identification problem. Our method begins with the
Bio-Dictionary, a collection of patterns that is generated from
processing very large public databases with the help of the
Teiresias algorithm. The collection accounts completely for

Figure 3. Result page of the web-based graphical user interface. The reported ORFs are color coded according to their scores. Selecting an ORF with the cursor
permits the user to see its starting and ending positions, the score that the ORF has received, length and nucleotide composition as well as its amino acid translation.
ORFs can be annotated interactively and regions of the genome can be further explored by zooming in or out using the corresponding buttons (http://
cbcsrv.watson.ibm.com/Tgi.html).
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the processed input, and discovers genes by making use of this
set of patterns alone. The method is augmented by associating
each of the used patterns with automatically derived weights.
These weights are genome independent and thus remain fixed
across genomes.

Through a series of carefully designed experiments we
extensively explored various settings that mimicked real-world
situations, and determined the optimal settings for our gene
finding approach. As evidenced by reported experimental
results from 17 archaeal and bacterial genomes, our method
can predict genes very accurately. The method achieves
sensitivity and specificity values that are simultaneously very
high while at the same time achieving a high rate of correctly
predicted start sites. Notably, no promoter or other information
is brought to bear during our determination of the genes and/or
start sites.

We demonstrated the capabilities of our method to extrapo-
late by intentionally relying upon a Bio-Dictionary that was
built from the June 12, 2000 release of SwissProt/TrEMBL,
i.e. a public collection of sequences that is by now >1.5 years
old. We nonetheless applied the resulting system to genomes
whose ORF translations were included in SwissProt/TrEMBL
either only in part or not at all, with exceptional results.

We should note that in addition to correctly discovering and
reporting those ORFs that have already been listed in the
public databases as putative genes, our method determines
additional candidate genes in essentially all of the genomes
that were used in the experiments: for a substantial fraction of
these previously unreported genes, and with the help of
FASTA, BLAST and CD-search, we determined similarities
with amino acid sequences contained in a very recent release of
SwissProt/TrEMBL. Such similarities further support the
hypothesis that these ORFs ought to have been reported as
putative genes in the first place.

We are currently in the process of pursuing several related
topics that include the determination of the performance
impact using Bio-Dictionaries built from selected collections
of proteins and not from full-size datasets; the determination of
a compact collection of seqlets for the express purpose of
efficient gene identification; extending our strategy to the case
of eukaryotic genomes, etc.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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