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Abstract

We consider the money distribution problem for a micro-payment scheme using a distributed
server system; in particular, for an automatic charging scheme named PayPerClick that allows
Internet users to view Web pages for which access charges are levied without tedious payment
procedures. A major bottleneck in the scheme is the network traffic caused by the distribution
of electronic money to many different servers. We propose a simple on-line algorithm for dis-
tributing electronic money to servers so that the network traffic is minimized. The algorithm
achieves the optimal online competitive ratio. We also consider a weighted version, for which we
give an asymptotically optimal online algorithm within a constant factor.



1 Introduction

In electronic commerce, the development of efficient schemes for charging and distributing of elec-
tronic money is a crucial issue [12]. One possible method of Web shopping is for users to make
actual payments by sending credit card information for each purchase. This method is sometimes
tedious and time-consuming. For example, when a user wants to see Web pages containing visual
information such as artistic photographs, videos, and news, in cases where a charge is made for
access, he or she should ideally be able to pay automatically without any interruption.

Although there are several cryptographic technologies such as electronic wallet [7] and offline
electronic cash [6, 4, 11], they need somewhat heavy protocols in order to be applied to a micro-
payment scheme. One simple possible method (an online certification method) is for the user to
send electronic cash to the shop, and for the shop to ask the user’s payment server (say, a bank)
to certify that the user’s balance is sufficient, and transfer the amount to the shop’s account in
the shop’s payment server. However, since the certification and money transfer process need to be
highly secured [3, 12], they create a lot of network transactions; and therefore, we need a technology
for reducing the number of certification and money transfer messages in the network. The MiniPay
system [8] uses an online strategy, and reduces the number of transactions by allowing a small risk
for the shop that a user may make a purchase without having enough money in his or her account.
However, it is desirable to avoid this risk if possible.

A practical solution is to use trusted payment servers, and process most transactions within
each server. Each user’s real account is on the user’s main payment server (called the home server),
but the purchase and payment are basically done on the shop’s payment server, which we call a
guest server from the viewpoint of the user. Each server is the shared payment server of multiple
shops, as well as a home server multiple users. Figure 1 shows a chart of our model. A payment
at a guest server can be completed without any communication with the home server if the guest
server has a certain amount of money that has been transferred from the user’s home server. The
distribution of the user’s money should be dynamically controlled by using some clever strategy.

An example of such a payment system is the PayPerClick [5] system ! for charging users to
view Web pages containing visual information. In this system, a payment is made automatically
when the user clicks on a link to a charged-for Web page and agrees to pay the fee. The Web pages
are managed by using special servers called PPC servers, with each Web page assigned to one of
the servers. A typical implementation of this charging scheme is a prepaid system, in which a user
prepays a fixed number of units (say, n units) of electronic money. We can also consider a postpaid
scenario in which the user receives acknowledgment each time he/she uses n units.

In order to avoid heavy transactions on a server, we use multiple servers, and hence the bottle-
neck of this solution is the network communication caused by the dynamic distribution of electronic
money among the servers. In this paper, we loosen the bottleneck by using a simple on-line money
distribution algorithm.

The problem is somewhat similar to the famous K-server problem [13, 10], where we must
choose how K mobile servers will serve a sequence of requests occured in the metric space. The
goal is to minimize the transportation cost. In our case, we can regard electronic cash as mobile
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servers, and a network of the payment servers as the metric space. The difference is that the amount
of electronic cash is reduced by a unit (or by the amount of the payment) when a payment is made,
and the amount of cash sent in a transaction does not affect the transportation cost. There have
been many studies of online algorithms for distributed systems and the Internet [1, 2, 9]. However,
to the authors’ knowledge, this is a new application of online algorithms.

We show that if the offline best strategy requires £ message sets, our online algorithm creates
at most klog(n/k) + 2k message sets, where each set consists of at most four messages on the
network. Since we can prove that klog(n/k) — O(k) message sets are necessary for any online
strategy, our algorithm attains an asymptotically optimal competitive ratio (in fact, this is a little
different from the usual competitive ratio analysis [13], since the ratio log(n/k) depends on k.) We
also generalize our algorithm for the case in which the total cost of traffic is considered instead of
number of messages, and show analytically that the algorithm attains an asymptotically optimal
performance if a constant factor is ignored.

2 Money distribution problem in the PayPerClick scheme

Although our methods can be applied to the general problem of distributing money on a distributed
payment server system, we use the PayPerClick problem to illustrate the use of our algorithms.
Suppose a user (say, Alice) initially buys n units of electronic cash, which are considered to be
prepaid money for viewing “charged-for” Web pages. A charge is made each time an item is clicked
in charged-for Web pages. The prices may depend on the Web items; however, we assume that it
is one unit for each click, since the general case can be reduced to this case.

We consider the following network model. We have a set of servers {pg,p1,...,pn}, where pg
is Alice’s home server, and the others are guest servers. Let balance(p;) be the amount of Alice’s
electronic cash kept at server p;. Each server has a set of charged-for Web pages. If Alice clicks
an item in a Web page assigned to p;, balance(p;) is decreased by 1. However, if balance(p;) = 0,
the server p; sends a remittance request, and obtains cash from other servers. We assume that the
remittance request is always sent to the home server pg, and that cash is sent through pg.

A very naive implementation of a PayPerClick scheme is to keep all electronic money at the
home server, and to send a unit of cash to a guest server every time a click occurs at that server.
This creates n network messages, which would cause a serious network traffic problem. Another
naive implementation is to distribute money evenly to all guest servers. In this case, however, M
may be very large, whereas a typical user accesses only a small number of servers.

On the other hand, if we know in advance where all the n clicks will occur, and let n; clicks
occur on p;, the optimal strategy is to send n; units to p; the first time the home server receives a
remittance request from p;. If there are k guest servers sending remittance requests, this strategy
requires only 2k messages (k remittance requests and k£ money-transfer messages). Unfortunately,
we cannot foresee future clicks, and hence we need an on-line strategy.

One possible online strategy is to send a fixed number of units (say, ¢ units) of cash to each
guest server when it sends a remittance request to the home server. This strategy seems to reduce
the amount of traffic to approximately n/t messages. However, it may happen that we send out all
n units from the home server at the first n/t clicks, and need to collect cash from guest servers to



make the next remittance; this reduces the performance if ¢ is large. Therefore, we need a better
strategy.

More generally, we consider the weighted-cost version in which the minimized target is the total
cost of the traffic, where the cost of sending a message between py and p; is ¢;. The case in which
¢; = 1 for each 7 is the above basic problem, which we call the unit-cost problem.

3 A lower bound

In this section, we give a lower bound for any online strategy. This lower bound is for the weighted-
cost version of the PayPerClick problem.

Suppose that the servers pi,...,p; are clicked during the consumption of n units of money.
We assume that any cash flow from p; to p; is via the home server pg. Let ¢; be the cost of
communicating between p; and py. Without loss of generality, we assume that ¢; = ¢pqy is the
maximum communication cost. Let C = ¢1 + ... + ¢.

We begin by stating the following well-known fact:

Lemma 3.1 I[f0<2<0.5,1—2>27%7,

Theorem 3.2 Any online algorithm incurs Q(C'log{(n+k)/k}) costs for the remittance messages
in the worst case. Moreover, if ¢mar < C/2, it incurs (C/2)log{(n + k)/k} costs, where the base
of log is 2.

Proof: First, we assume that c¢p,q,; < C/2. Suppose that n;(t) units of money are given to p;
just after the ¢-th remittance request (which we describe below) is made. Let n(t) = Y5 | n;(t),
fi(t) = (ni(t) + 1)/ci, and f(t) = min; fi(?).

The strategy of an adversary is to always click the ¢-th server with the minimum f;. Then,
after at least m;(t) + 1 clicks, the adversary forces a remittance message to be sent from p;, and
we charge c;, since we need to bring some money to p;. Note that the algorithm may create some
network communication during the period, but we ignore it (i.e., we do not charge) unless it is a
remittance message from p;. Hence, we can assume that cost(t + 1) > cost(t) + ¢;, where cost(t) is
the cost up to the ¢-th remittance request. We permit any relocation of money to be made free of
charge before starting the next stage.

The amount of money is decreased by n;(t) + 1. Since f(t) < (n(t) + k)/C, ni(t) + 1 <
[ci(n(t)+k)/C]. Thus, n(t+1) > (1—¢;/C)n(t)—c;k/C. Therefore, n(t+1)+k > (1—¢;/C)(n(t)+k).
From the lemma, 1 — ¢;/C > 2-2¢i/C Hence, if the balance is reduced to zero after T' iterations,
(n + k)272¢0stT)/C < k. Therefore, 2cost(T)/C > log{(n + k)/k}, and cost(T) > (C/2)log{(n +

Next, if 3C/4 > ¢; > C/2, suppose that the amount of money is decreased by a factor of
Y by clicks on p;. Then, log, Y remittance requests must be sent by p;, and hence a cost of
c1log, Y > (C/2)logy X is incurred. On the other hand, the amount of money must be decreased
by a factor of X > (n+k)/kY by clicks on other servers, and the cost must be at least (C/2)logY.
Hence, the total cost must be Q(C'log{(n + k)/k}).



Finally, if ¢; > 3C/4, we change the adversary’s strategy to one such that it clicks py if nq(t) <
n(t)/2, and otherwise clicks p; that minimizes f(¢). If ni(t) > n(t)/2, f(t) < (n(t) + k)/(C/2) <
2(n(t)+k)/C, ni(t)+1 < 2¢;(n(t)+k)/C, and n(t+1)+k > (1 —2¢;/C)(n(t) + k). Since ¢; < C/4,
we can use the lemma and 1 — 2¢;/C > 2744/, Hence, if we spend costyq;(T) on such clicks,
and the amount of money is decreased by a factor of X, 4costsman(T)/C > log X. On the other
hand, if ni(t) < n(t)/2, n(t +1) +k > (n(t) + k)/2. Hence, if we spend a total of costjgrge(T") on
clicking p; and the amount of money is decreased by a factor of Y, then costigyge(T) > Cilogy Y >
(3C'/4)logs Y. Since XY > (n + k)/k, we have the Q(Clog{(n + k)/k}) bound.

O

Since the optimal offline algorithm requires C' remittance messages, the above result gives an
Q(log{n/k}) lower bound for the competitive ratio. Setting ¢; =1 for all i, we have the following:

Corollary 3.3 For any online algorithm, (k/2)log{(n+k)/k} messages are necessary for the unit-
cost problem.

The constant factor of the above corollary will be slightly improved later.

The above lower bound uses an adaptive adversary, which decides what action to take with
knowledge of the current status of the money distribution. For analyzing a randomized online
algorithm, an oblivious adversary, which selects an action without knowing the current status, is
usually considered [13]. We can show that our asymptotic lower bound can be attained by using
such an oblivious adversary.

Proposition 3.4 Any online algorithm requires Q(C'log((n+k)/k)) messages against an oblivious
adversary.

Proof: For readability, we assume that Cy,q; < C/2. Suppose that the adversary clicks on servers

P1,--.,Pg. Our oblivious sequence of clicks is as follows:

1: while n > 0;

2: Select i € {1,2,..,k} with probability ¢;/C

3: Perform [2¢;n/C| + 1 clicks on p;

4:n=n—|2¢n/C| -1

5: end while

For each while loop, a remittance message occurs with probability 0.5, and hence we can perform
a similar analysis to that used for the above theorem. O

4 An almost optimal algorithm for the unit-cost case

In practice, the unit-cost problem is important, and we give an asymptotically optimal algorithm
for it in this section. Our simple online strategy for the unit-cost problem is basically as follows
(see also Figure 2):

Algorithm. Initially, all n units are kept at the home server. When an empty server p; is
clicked, p; sends a remittance message to the home server pg, and pg selects the server p; with the



maximum balance and asks it to send half (actually, [balance(p;)/2]) of its cash to po; then, po
transfers the cash to p;.

There is a deception in the above strategy: The home server cannot determine the exact current
balance of other servers without sending additional messages. For the time being, we ignore the
above defect, and assume that the home server knows the exact balance. We later remove this
restriction by making a minor modification to the algorithm. Without loss of generality, we assume
that the home server pg also sends remittance information to itself if a click occurs when it is empty.
Since each remittance request is accompanied by a message set (to be precise, it is named regular
message set) consisting of at most two pairs of money-transfer messages between the home server
and guest servers, we count only the number of remittance requests.

Lemma 4.1 If the optimal offline algorithm requires k messages, the above algorithm requires at
most klog(n/k) + 2k remittance requests.

Proof: Since the optimal offline algorithm requires k messages, n clicks occur on k servers.

We claim that the worst scenario for the above algorithm is that the clicking is done by the
LCB (least current balance) adversary, which clicks a server with the least current balance. Note
that this scenario is the same as that given to show the lower bound in the previous section. If
this claim holds, it suffices to consider the performance of our algorithm for LCB. Indeed, each of
k servers is clicked (since they are initially empty) in the first & clicks, and the largest balance at
this stage is at most [2n/k], there are at most & remittance requests until the largest balance is
reduced by half, and hence k(2 + log(n/k)) remittance requests suffice.

The claim is proved by induction on n. If n = 1, the claim is trivial, since we need only one
remittance message if the click is made on an empty server, and no remittance message otherwise.
We assume that the claim holds if the total amount of cash is n—1. Let Y be the sequence obtained
by arranging the balance values of servers in a non-increasing order. |Y'| is the sum of the sequence,
which is the total amount of cash. Let f*(Y’) be the sequence obtained from Y by our algorithm
after s clicks which occurs in the LCB order. Suppose that there is a stronger adversary OPT than
LCB, and let ¢*(Y') be the sequence after s clicks have been made by OPT. From the induction
hypothesis, g(X) = f(X) for |X| < n — 1. Therefore, ¢°(Y) = f~!(g(Y)), since g(Y) has only
n — 1 units of cash.

Let p; be the server with the minimum balance in Y. If balance(p;) > 1, suppose the opti-
mal algorithm clicks on p;, where balance(p;) > balance(p;). So far, no remittance message has
been created. From the induction hypothesis, we see that the next click will occur on p; in both
adversaries. Hence, we see that ¢?Y can also be obtained by clicking on pj in f(Y). However,
from the induction hypothesis, the strongest adversary on f(Y') is LCB, which clicks p;. This is a
contradiction.

If balance(p;) = 0, we consider a server p, with the maximum balance in Y. LCB creates a re-
mittance message and resets balance(p;) to [balance(ps)/2] —1 and balance(ps) to [balance(ps)/2].
Suppose OPT clicks on pj, where balance(p;) > 1. Then, the next click on ¢g(Y) must be made on
an empty server (without loss of generality, p;) by OPT and create a remittance message. Indeed,
g?(Y) is obtained by clicking on p; in f(Y) if j # s and on either p; or p; if j = s. This contradicts
the fact that the strongest adversary on f(Y') is LCB. O



We now modify our algorithm so that knowledge of the exact current balance of servers is not
necessary. Instead of the real balance, we use the temporary balance temp(p;), which is the balance
of server p; when the last message was sent between p; and pg. Precisely speaking, if the last message
was a transfer of  units of money from py to p;, then temp(p;) = x; otherwise, the last message
should be the transfer of [balance(p;)] units of money from p; to pg, and temp(p;) = |balance(p;)],
where balance information is sent to pg together with the money. In the modified algorithm, if the
remittance request is issued, the server with the maximum temporary balance is chosen, and half
of the (real) balance at the server is sent back to the home server.

Theorem 4.2 The modified algorithm creates at most klog(n/k) + 2k remittance requests.

Proof: Let p; be the server with the maximum temporary balance. Let temp(p;)—balance(p;) = h
when the remittance request at a server p; is created. If balance(p;) = 0, our algorithm issues
another remittance request so that the request at p; is covered. We perform the following shuffling
of the order of clicks. The h clicks on p; are postponed until after the remittance request, and then
|h/2] clicks are made on p; and [h/2] clicks are made on p;. Note that, if balance(p;) = 0, this
makes an additional remittance request at p;. Notice that both the configuration of the balances
at the end and the number of remittance requests are not modified by this shuffling order of clicks.
Moreover, the original algorithm using the real balances and the modified algorithm using the
temporary algorithm perform in the very same way if the clicks are made in the rearranged order.
Thus we conclude that the performance of the modified algorithm is not worse than the worse-case
performance of the first algorithm. O

From Corollary 3.3, the above bound is asymptotically tight, if we ignore a factor of 2. Moreover,
we can show a stronger lower bound. We count the number of message sets: A regular message
set consists of a remittance request from the current server to the home server, a money transfer
request from the home server to a guest server, a money transfer from the guest server to the home
server, and a money transfer from the home server to the current server. If either the current
server is the home server or the home server has money to transfer to the current server directly,
the message set consists of fewer messages. An irregular message set consists of a pair of messages
between two servers (through the home server) which transfers money when no remittance request
is issued. This can be also created as an additional money transfer message set to a regular message
set just after a remittance request is issued.

Lemma 4.3 Any online algorithm needs klog(n/k) — k message sets.

Proof: Suppose that after a completion of a remittance and a money transfer, the balance of
the poorest server is less than N/2k, where N is the current total balance. We call this situation
“skew”; otherwise, we call this situation “smooth”. The initial situation is skew, since the home
server has all the money. Suppose that we have a smooth situation after z remittance requests,
and that the current balance is N. Without loss of generality, we can assume that N > k. After a
skew situation, the next message set is issued against the LCB strategy before the total balance is
reduced to (1—1/2k)N. Therefore, z > klog{n/N}, by the same argument as Lemma 4.1. Suppose
that, in a smooth situation, the server p; has N; units. Because of the smoothness, N; > N/2k.



We will prove later that the optimal algorithm need not use an irregular message set, and hence
we first consider the case where the algorithm generates only regular message sets.

After the initial smooth situation, the adversary first empties the k-th server, and then clicks
on the poorer of the two servers involved in the last money transfer (either the sender or the
receiver). This decreases some N; to at least | N;/2]. Then, it is easy to see that >F= ! |log N;| >
(k—1)log(N/2k) remittance requests are necessary until all the money is used up. Hence, the total
number of remittance requests must be at least klog{n/N} + klog(N/2k), which is k log(n/k) — k.

Next, we prove that irregular message sets will not improve the performance. Suppose that the
optimal algorithm needs at most M < klog(n/k) — k message sets in total. The optimal adversary
strategy is not bothered until the first irregular message set is issued. We assume that it is issued
after L regular message sets. Let D(init) be the money distribution after the L regular message
sets. Suppose that the adversary’s next move for D(init) against an algorithm without irregular
messages is to click m times the server p; to empty it if no irregular message set is sent. The next
move of our adversary is to do the same (click m times on p;) on the current distribution; however,
if the irregular message sets reduces the balance of p; before that, we just empty it.

Consider the time period between the L-th regular message set and the end of the next move
of the adversary. The irregular message set sending z units of money from p; to p; is denoted by
send(i, j; ). If both send(i, j; ) and send(j,1;y) are executed and z > y, we can replace them by
the pair of send(i, j; = —y) and send(i,[;y) to give the exactly same money distribution. Therefore,
we can assume that each server is either a source server (only sending money) or a sink server (only
receiving money) during the period.

If p; is a sink server and send(j,i; ) has been done, it is not emptied with the next move (m
clicks on p;). However, we can consider another algorithm which first waits at D(init), then issues
send(j,1; ) (as a regular message set) when p; is emptied, and then does the rest irregular message
sets. This algorithm attains the same money distribution as the original one, has M message sets,
and its first L + 1 message sets are regular.

If p; is a source server, it is emptied, and suppose y units are sent from the server p; by the
algorithm. Suppose that p; originally had n; units of money and has received send(s(q),7;z(q))
(g=1,2,..,h). Let u be the smallest index such that n; + >, z(q) > y. If n; >y, we set u = 0.

Then, we can design another algorithm which first waits at D(init) until p; becomes empty,
and then receives n; units from p; (if n; = 0, receives send(s(1),4;z(g)) from py)) as a regular
message set, and then executes the rest of irregular message sets except that (1) messages sent from
p; are removed and (2) send(s(q),7;x(q)) is changed to send(s(q),%;z(q)) for each of ¢ < u. It is
easy to observe that the balance of each server of the resulting distribution is not more than that
of the current distribution. Our adversary reduces the current distribution to this distribution by
applying some clicks.

Hence, we can design an algorithm in which (1) the number of message sets is at most M and
(2) the first L + 1 message sets are regular. The next move of our adversary is as if it competes
with this new algorithm.

Therefore, by induction, there exists an algorithm with at most M messages without an irregular
message set, which is a contradiction. O

The number of messages depends on each message set; it is two if the current server is the home



server or the home server sends its own money to the current server, and four otherwise. If we
use a simplified model which neglects the above difference, the above lower bound implies that our
algorithm is optimal up to an O(k) additive term.

5 Weighted version

In this section, we consider a weighted version of the PayPerClick problem, in which each remittance
message between pg and p; has transportation cost ¢; and the goal is to minimize the total cost of
the traffic.

Without loss of generality, we assume that servers p; (1 < i < k) are the k servers that will be
clicked. Let ¢ and ¢, be the smallest and largest costs among ¢; (1 < i < k). We can easily
see that the total cost of the optimal offline algorithm for this problem is C'= 31 < ¢;-

We can directly apply the online algorithm given in the last section for this weighted problem,
and it is observed that it incurs a cost of ¢pey - (2k log(n/k) + 4k) at most.

We propose the following algorithm with a better performance ratio:

Algorithm. Initially, all n units of money are kept on the home server py, and let f be n/cpmqz-
Repeat the following procedure until n units of money have been used up:

1. Let p; be the clicked server. If p; has any money, decrease balance(p;) by 1 unit of money
and go to step 5. Otherwise, p; sends a remittance request to the home server py.

2. If the home server pg has more money than ¢;f/2, send [¢;f/2] units of money from pg to p;,
decrease balance(p;) by 1 unit of money, and go to step 5.

3. Let {ps,,Pss»--- Ds,_, } be the list of {p;|j # i} sorted descendingly according to the value of
balance(p;)/c;. Let | be the smallest [ such that ¢; <37 ;< ¢s; or [e;f/2] < balance(po) +
Yi<j<ibalance(ps;)/2]. If no such [ exists, let [ be k — 1. Send [balance(ps;)/2] units of
money from ps; to the home server py for each 1 <j <.

4. If the home server pg has at least ¢; f/2 units of money, send [¢;f/2] units of money from py
to p;. Otherwise, send balance(py) units of money from py to p;. Decrease balance(p;) by 1
unit of money, and go to step 5.

5. Let f' be max{max<;<p{balance(p;)/c;}, balance(py)/cmaz}- If f/2 > f', let f be f/2.

Figure 3 shows the behavior of this algorithm. The figure shows the remittance behavior in the
case that neither the clicked server nor the home server has any money. Notice that this algorithm,
like the first unit-cost algorithm in the last section, uses the value of balance(p;) which cannot
be known to the actual algorithm. We will modify it later. Before showing the total cost of this
algorithm, we obtain the following two lemmas:

Lemma 5.1 In the algorithm, f must be updated after spending 3C' + 5cpmqey message cost.
Proof: By definition of f, balance(p;) < ¢;f for each 1 < ¢ < k, and balance(py) < Cmazf at

the first step of any iteration of the algorithm. The remittance message cost is charged only in

10



steps 2, 3, and 4 of an iteration procedure. Consider a period which does not include any part
of an iteration procedure updating f. If a server is chosen to send money to the home server in
step 3, its balance never exceeds c; f/2 afterwards. Moreover, since the list of p; in step 3 is in the
descending order according to balance(p;)/c;, once a server whose balance is not larger than c¢; f/2
was chosen to send money to the home server in step 3 of the algorithm, f must be updated in
step 5. Therefore, no such server can be chosen in step 3 during the period. This means that each
server is chosen in step 3 at most once during the period. Thus the total remittance message cost
in step 3 must be smaller than C during the period.

Next, let us consider the message cost incurred in steps 2 and 4. Let multiset {py,,pt,,---, P, }
be the servers clicked when they are empty during this period. Note that the servers that are
clicked s times will appear s times in the set, and we distinguish them in the following discussion.
The total cost incurred in steps 2 and 4 during this period is thus > <;<,, ¢t -

Without loss of generality, we assume that {p;,,ps,,...,ps, } are the servers to which [c;, f/2]
units of money are sent from the home server, and that {p;,,,ps,,»,---,Ps, } are the servers to
which fewer than [c¢;, f/2] units of money are sent from the home server.

First, we consider the servers p;, (i < r). The cost spent in steps 2 and 4 for them is ¢’ =
> 1<j<r Ct;- During this period, we send remittance messages from the home server to servers
{PtysPtys -+ -5 pt, } (in steps 2 and 4) for 37, ;< [er; f/2] units of money, which is not smaller than
C'f/2.

At the beginning of this period, the home server has at most ¢p,q.f units of money. Thus we
must send at least C'f/2 — ¢;pq, f units of money in total from servers to the home server in step
3 when the clicked server is p;; (¢ < r). Each of the servers has only ¢;f units of money at most,
so the total remittance message cost in step 3 when the clicked server is p;; (i < r) is at least
C'/2 = ez

Next, consider the servers p;, (i > r). The cost at steps 2 and 4 for them is C" = Dr<j<m Ct; -
There are two cases (see step 3 in the algorithm): Case 1. ¢, < 35, ¢s; in step 3. Case 2.
[l =k —1in step 3. However, if [ = k — 1, it is observed that f must be updated in step 5, which
means case 2 never occurs in the period. In case 1, the message cost incurred at step3d is at least
that at steps 2 and 4 (i.e., C").

Thus, total message cost incurred at step 3 is at least C'/2 — ¢00 + C". According to the upper
bound of the message cost incurred at step 3, it must be smaller than C: C"/2 — ¢y + C" < C.
The message cost incurred at step 2 and 4 is C' + C"”, which is smaller than 2C + 2¢,,4, because
C'+C"<C"+20"=2-(C")2 = epmaz + C") + 2¢maz < 2C + 2¢imqz-

Hence the message cost during a period which does not include any part of an iteration updating
f is smaller than 2C + 2¢;,4: + C = 3C + 2¢4-

Consider the message cost incurred during an iteration. The cost incurred at step 2 or 4 is at
most Cpqz, and that at step 3 is at most 2¢,,,4,,. Thus the cost is at most 3¢, in total. Finally,
we conclude that f must be updated after spending at least 3C' 4+ 2¢pa0 + 3Cmaz = 3C + 5Cmaz
message cost. d

Corollary 5.2 The cost of the algorithm is at most (3C + 5¢pqz) logn.

We sharpen the above result by using the following lemma:
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Lemma 5.3 The algorithm spends at most 10C — 4¢par + 2Ck/nlog(C/cmas) message cost until
f becomes smaller than n/C.

Proof: Let t; be the total number of clicks until the click causing the ith remittance request, i.e.,
the t;th click is the ith click on empty servers. Let u; be the number of remittance requests before
the jth update of f. Let vj =t,, and f; = 270,/ Cmaz be the value of f after the ith update of f.
Let p,,; be the server clicked at the ¢;th click, and let C; be Zlgjgui Cuw; -

In the beginning, the home server has all the money, and f = n/c¢pqe,. According to step 2
of the algorithm, if the sum of the costs of the clicked (empty) servers exceeds ¢pqe, the balance
of the home server is reduced to below n/2, and f must be updated to fi = n/(2¢ne:) and
C1 < Cmaz + Cuy; < 2Cmaz-

We can observe that, after the v;th click, Zle balance(p;) < C;f; and balance(py) < cmazfi- A
requesting server p; requests [¢; f;/2] units of money, and a requested server p; sends [balance(p;)/2]
units of money. Thus if the sum of the costs of the clicked empty servers after the v;th click exceeds
(S5, [balance(p:)] + balance(po))/ (fi/2) < (Cifs/2+ k]2 + cmanfs)] (fi/2) = Ci+ 2emas +/ fi, |
must be updated.

Thus Ciy1 < C; 4+ (C; + 2¢mar + k/fi) + 2cu,,,, < 2C; 4 3¢maz + k/fi- We can see that
C; < 2740y + 3cmaz + kemaz(i — 1)/n) — 3cmaz < (5+ k(i — 1)/n) - 27 gz — 3¢maz, because
fi= 2l71f1 = 27ln/cmax-

Let I = [logy(C/cmaz)]- It is obvious that [ > 1 and f; < n/C. Then C; < (5 + k(I —1)/n) -
2" eae — 3cmar < (5 + k/nlog(C/cmaz))C — 3¢maz- Thus, the total cost until the vjth click in
steps 2 and 4 of the algorithm is smaller than (5 + k/nlog(C/cmaez))C — 3¢maz-

After the v;th click, the total cost in step 3 until the v;11th click is at most C;—1 + 2¢p4. Thus
the total cost in step 3 until the v;th click is smaller than Y, ;(C;—1 + 2¢nae). It is smaller than
(5 + k/n10g(C/cmaz))C — ¢max because Y;1(Ci1 + 26maz) < 2ici((5 + k(@ —2)/n) - 2 2 ¢ran —
3¢maz + 2maz) < (5+ k(I —2)/n) - 271 — e < (54 k/nlog(C/cmaz))C — Cmaz-

Hence we conclude that f becomes smaller than n/C after a remittance message cost at least
10C — 4cpmae + 2Ck/nlog(C/emaz) has been incurred. O

Theorem 5.4 The algorithm incurs a remittance message cost that is at most
(3C + 5¢maz) 10g(emazn/C) + 10C — depar + 2Ck /nlog(C/emaz)-

Proof: From Lemma 5.3, after spending 10C — 4c¢per + 2Ck/nlog(C/emaz), f is updated
log(cmazn/C) times and f is reduced to 1/¢pmey, which means that the system is empty. The
result follows from Lemma 5.1. O

Since balance(p;) cannot be known to the actual algorithm, we must modify this algorithm to
use temp(p;) instead of balance(p;). We obtain the following theorem for the modified algorithm:

Theorem 5.5 The modified algorithm incurs a remittance message cost that is at most

(3C + 5¢maz) 10g(emazn/C) + 10C — depar + 2Ck /nlog(C/cmaz)-

Proof: We can shuffle the order of the clicks to let temp(p;) = balance(p;) without changing
the total remittance message cost, as in the case of the unit-cost algorithm. Let h; = temp(p;) —
balance(pj) when the remittance request at a server p; is created. We postpone h; clicks on p; until
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after the remittance request. Furthermore, we let the postponed [h;] clicks be made on p; and |h; |
clicks be made on p;. For this click sequence, the results of the original algorithm and the modified
algorithm are the same, and the remittance cost is same as in the case of the original click sequence
by the modified algorithm. This shows that the worst-case cost by the modified algorithm is not
worse than the original algorithm. O
Hence, for the weighted problem, the above algorithm has a better bound than the algorithm for
the unweighted problem discussed in the last section: the former algorithm costs O(C log(¢pmazn/C))
and achieves asymptotic optimality within a constant factor, while the latter costs O (kcmaz log(n/k)).

6 Concluding remarks

We have presented optimal on-line algorithms for the problem of distributing money on a payment
server system in electronic commerce. Although we have given lower bounds, they hold only for a
simple server-network model using connections between a home server controlling the whole process
and guest servers. A more sophisticated distributed network model might make it possible to create
a system with a better performance.

In practice, the algorithms should be mixed with some other heuristic rules. For example, we
usually bound the number k of active guest servers, and money remaining at guest servers should
be returned to the home server at a fixed interval (for example, every quarter year). Also, users
should be advised to supplement their cash before spending all n units, in order to improve the
performance.

A preliminary demonstration system for the PayPerClick is available [5] (unfortunately, only in
a Japanese version) but it is a virtual prototype which does not support any real payment, and the
current prototype does not have a money distribution scheme. Hence we are going to implement
our algorithms. We will also apply electronic signature and other security techniques so that users
can claim compensation in the event of malicious actions by servers.
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Figure 2: Behavior of the basic algorithm for the unit-cost case
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