IEICE TRANS. , VOL. E00-D, NO. 00 1998

[PAPER

Finding Useful Detours in Geographical Databases

Tetsuo Shibuya!, Nonmember, Hiroshi Imaitt, Member, Shigeki Nishimura'ff,
Hiroshi Shimoura'!t, and Kenji Tenmoku'tt, Nonmembers

SUMMARY

In geographical databases for navigation, users raise vari-
ous types of queries concerning route guidance. The most funda-
mental query is a shortest-route query, but, as dynamical traffic
information newly becomes available and the static geographi-
cal database of roads itself has grown up further, more flexible
queries are required to realize a user-friendly interface meeting
the current settings. One important query among them is a de-
tour query which provides information about detours, say listing
several candidates for useful detours.

In this paper, we first review algorithms for the shortest and
k shortest paths, and discuss their extensions to detour queries.
Algorithms for finding a realistic detour are given. The efficiency
and property of the algorithms are examined through experi-
ments on an actual road network.
key words: Geographical databases, car navigation, shortest
paths, detour query

1. Introduction

In geographical databases, various types of queries
arise, especially for spatial and topological queries. One
such typical query is a shortest-path query, which is
crucial for car navigation, etc. Recently, as dynam-
ical traffic information newly becomes available such
as ATIS (Advanced Traffic Information Service), and
VICS (Vehicle Information & Communication System)
in Japan, more sophisticated queries come to be re-
quired. Also, the static geographical database of roads
itself has grown up further, and similarly in this re-
spect advanced types of queries are necessary to realize
a user-friendly interface meeting the current circum-
stances. One important query among them is a detour
query which provides information about detours; for
example, enumerating several candidates for useful de-
tours.

From the algorithmic viewpoint, the shortest path
problem itself has been studied very well for a long
time. For example, the Dijkstra method is the most

Manuscript received 1998
Manuscript revised 1998
fThe author is with IBM Tokyo Research Laboratory.
This work was done while the author was at Department of
Infomation Science, University of Tokyo.

' The author is with Department of Information Science,
University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-
0033, Japan

1 The authors are with Sumitomo Electric Industries,
Ltd., Osaka, Japan

famous and traditional algorithm for this problem. To
make this algorithm more efficient, many algorithms
has been considered, such as the A* algorithm, the
bidirectional Dijkstra method, and the bidirectional A*
algorithm, which are often cited as AI (Artificial Intel-
ligence) search techniques [2]-[5], [9].

The k shortest paths problem is the generalization
of this shortest path problem. If you need “good” so-
lutions other than the optimal one, or optimal solution
under certain constraints, it is a good news that you can
find the £ shortest paths quickly. Hence, this problem
is also very applicable in many fields, such as network
connection routing, finding a detour in navigation sys-
tems, DNA alignment [8], etc. This problem is also
studied very well, and, recently, Eppstein has proposed
a very efficient algorithm for this. According to this,
for a directed graph with n vertices and non-negative
m edges, the k shortest paths from one source to ! desti-
nations are known to be obtained in O(m+nlogn+1k)
time, or in sorted form in O(m +nlogn +lklogk) time
[1].

But this original algorithm requires searching with
the Dijkstra method from the source to the other all ver-
tices. Thus, reduction of the searched region is desired,
especially in case the graph is very large. This paper
extends the Eppstein’s algorithm, using upper bound of
the length of the suboptimal paths and the technique
of bidirectional A* algorithm, to reduce the searched
region in the 2-terminal & shortest paths problem.

This paper then discusses the detour problem as
one of its applications. The ‘detour’ is a suboptimal
path which is short but overlaps little with the shortest
path. But this concept is ambiguous. Because of this
ambiguity, the detour problem is not so studied as the
shortest path problem. Hence this paper defines ‘de-
tour’ precisely, and proposes algorithms for finding a
realistic detour based on previous algorithms.

Then the efficiency of these algorithms are exam-
ined through experiments on an actual road network
from a geographical database.

2. Preliminaries
In this paper, let the graph in assumption be a directed

graph, G = (V, E), in which [(v,w) is the length of the
edge (v, w) which is always non-negative, and s be the

source and ¢ be the destination when we consider the
shortest path problem or the k shortest path problem.
Add to this, let d(u,v) be the shortest path length from
u to v, n be |V| and m be |E|.

2.1 Dijkstra Method

The Dijkstra method is a basic algorithm to solve the
shortest path problem. The following is the outline of
the Dijkstra method for two-terminal problem:

1. Let S be the empty set, and ps(v), the potential
of a vertex v, be +00 except for the source s. Let
ps(s) be zero.

2. Find the vertex vg which has the minimum poten-
tial in V' — S and add vy to S. If vy equals to t,
halt.

3. For all vertices v such that (vg,v) is in E, if
ps(vo) +1(vg, v) is less than ps(v), replace the path
from s to v with the path from s to vg and the edge
(vo,v), and let ps(v) be ps(ve) + 1(vo, v).

4. Go to step 2.

In this algorithm, all the searched vertices has the
information of the temporary shortest path from the
source s, and the potentials of the searched vertices de-
note the length of the path. If we do not halt until
|S| be zero, we can get the shortest path tree from the
source. This algorithm searches all directions regard-
less of where the destination is, which is a disadvantage
of the Dijkstra method.

2.2 A* Algorithm

The A* algorithm finds the shortest path from source
s to destination ¢ efficiently, using a heuristic estimate
for the length of the shortest path to the destination
t, which is not longer than the actual shortest path to
the destination, if the estimate can be given for each
vertex[3][9]. The outline of the algorithm is as follows:

1. Let S be the empty set, and ps(v), the potential
of a vertex v, be 400 except for the source s. Let
ps(s) be zero.

2. Find the vertex vy which has the minimum value
of ps(v) + hs(v) in V — S and add vg to S. If vg
equals to ¢, then halt.

3. For all vertices v such that (vgp,v) is in E, if
ps(vo) +1(vo, v) is less than p,(v), replace the path
from s to v with the path from s to vg and the
edge (vg,v), and let ps(v) be ps(vg) + I(vg,v), and
remove v from S if v isin S.

4. Go to step 2.

In this algorithm, p,(v) also denotes the length of
the temporary shortest path from s to v. ps(v) + hs(v)

IEICE TRANS. , VOL. E00-D, NO. 00 1998

is the temporary estimate for the shortest path from s
to t via v. The searched vertices by the A* algorithm is
always within searched vertices by the Dijkstra method.
In this way, the A* algorithm can get the shortest path
more effectively.

In the A* algorithm, the shortest path from s may
not appear first, and a shorter path may be found in
the future search, which is the reason of the removal
of vertices from S in step 3. It makes this algorithm
rather inefficient. This can be avoided if the estimator
is dual feasible. The definition of ‘dual feasible’ is as
follows:

Definition 1: The estimator h, for the shortest path
to t is called dual feasible if and only if h, satisfies the
following constraint:

Y(u,v) € E l(u,v) + hs(v) 2 hg(u) (1)

For example, Euclid distance between v and ¢ can
be used for a dual feasible estimator in a graph of a
road network.

If the estimator is dual feasible, the A* algorithm

can be easily translated to the Dijkstra method by mod-
ifying the length of the edges [2]:
Theorem 1: Let h, be a dual feasible estimator for
s. The Dijkstra method on a graph in which the length
of the edge (u,v), or l(u,v) is replaced by I'(u,v) as fol-
lows is equivalent to the A* algorithm on the original
graph.

U'(u,v) = l(u,v) + hs(v) — hy(u) (2)
2.3 Bidirectional Methods

The Dijkstra method and the A* algorithm are unidi-
rectional algorithms. This means one of the two ver-
tices, that is the source or the destination, plays less
role than the other. The bidirectional Dijkstra method
solves this problem[4][5].

In the bidirectional Dijkstra method, searches are
done both from the source and destination using the
Dijkstra method. In outline, the algorithm is like the
following:

1. Let S and T be the empty set, and the potentials
ps(v) for s and py(v) for ¢ be both 400, except for
ps(s) and pi(t). Let ps(s) and pi(t) be zero.

2. Add vertex vy which has the smallest potential for
sin V — S. Then, go to step 7 if vg is in T.

3. For all vertices v such that (vo,v) is in E, if
ps(vo) +U(vo,v) is less than p,(v), replace the path
from s to v with the path from s to vy and the edge
(vo,v), and let ps(v) be ps(vo) + 1(vo, v)-

4. Add vertex vy which has the smallest potential for
sin V —T'. Then, go to step 7 if vg is in S.

5. For all vertices v such that (v,vp) is in E, if I(v, vg)
+p¢(vp) is less than p;(v), replace the path from v

SHIBUYA et al: FINDING USEFUL DETOURS IN GEOGRAPHICAL DATABASES

to ¢ with the edge (v,vg) and the path from vg to
t, and let p;(v) be l(v,vo) + p¢(vo)-

6. Go to step 2.

7. Find the edge (u,v) minimizing ps(u) + I(u,v) +
pt(v) such that v is in S and v is in T'. The short-
est path from s to t consists of the path from s to
u and the edge (u,v) and the path from v to ¢ if
ps(u) + 1(u,v) + py(v) is less than ps(vo) + pi(vo),
otherwise it consists of the path from s to vy and
the path from vg to t.

The paths which pass vertices in neither S nor T
are always longer than ps(vo) + pt(vg). Thus, the ob-
tained path is guaranteed as the shortest path.

If the graph is homogeneous, the number of ver-
tices searched with this algorithm is half of that with
the Dijkstra method, because these searched vertices
are in two cycles whose radii in this algorithm are half
of the radius in the unidirectional Dijkstra method.

But this bidirectional Dijkstra method searches all

directions regardless of where the other terminal is. If
we have dual feasible estimators for both of the source
and the destination, we can overcome this disadvan-
tage, using a technique like in Theorem 1 based on the
following theorem:
Theorem 2: By searching the shortest path with the
bidirectional Dijkstra method on the graph in which the
length of edge (u,v), or l(u,v) is replaced by the follow-
ing I'(u,v), we can get the shortest path. Let hs and h;
be dual feasible estimators for source s and destination
t.

I'(u,0) = U(u,v) + 5 (hs(v) = hs(w))

+ 5 () = o))

In this algorithm, the forward search is equiva-
lent to that of the A* algorithm using estimator of
(1/2)(hs(v)—he(v)), and backward (1/2)(ht(v)—hs(v)).

2.4 Eppstein’s Algorithm

As for finding the k shortest simple paths (i.e. paths
without cycles), the best known bound is O(k(m +
nlogn)) [7]. On the other hand, Eppstein proposed
an algorithm which finds the k shortest paths implic-
itly regardless of cycles, in time O(m + nlogn + k), or
O(m+nlogn+klogk) if the output paths are sorted[1].
We discuss the latter algorithm here.

At first, we define §(u,v) for the edge (u,v) as fol-
lows:

0(u,v) = l(u,v) + d(v,t) — d(u,t) (4)

This 6(u,v) means how much longer it will take
than the optimal way if we go to the edge (u,v), and
therefore this value is always non-negative.

If we search by the Dijkstra method from the des-
tination ¢, a shortest path tree to t can be made. If an
edge (u,v) is on this tree, 6(u,v) is zero. If an edge is
not on the shortest path tree, it is called a sidetrack. If
we go along a s-t path p other than the shortest path,
there must be sidetracks on the path, and we define
sidetrack(p) as the nearest sidetrack to ¢ within them.

We can suppose a heap, in which the parent of a
path p is a path which is same as p until sidetrack(p)
and go along the shortest path instead of going to
sidetrack(p). We define this parent of p as parent(p).
The root of the heap is the shortest path, and all the
path from s to t appear in the heap once. In this heap,
p is d(sidetrack(p)) longer than parent(p).

We call p-heap if the node of the heap has only p
children at most. The basic concept of the Eppstein’s
algorithm is to modify this path heap to 4-heap. Once
the 4-heap has made, we can get the k shortest paths
in O(k) time, or O(klogk) time if we sort the output
paths[6]. The following is the outline of this algorithm:

1. Make the shortest path tree from all the vertices
to t by the Dijkstra method.

2. For each vertex v, construct Hg(v), that is, a 3-
heap of sidetracks (u,u’), such that u is on the
shortest path from v to ¢, ordered by d(u,u’) de-
fined above, as follows:

a. For each vertex v, make H,,:(v), that is a 2-
heap in which the root has only one child, of
sidetracks (v,v") ordered by é(v,v").

b. For each vertex v, make Hp(v), that is, a 2-
heap of vertices on the shortest path from v
to t ordered by the value ¢ of the root in the
heap made in step 2-(a). For the detail of this
step, see [1]. Then merge H,,:(v) and Hr(v)
to make Hg(v).

3. For each v in GG, make a pointer from each node in
Hg(v), which represents a sidetrack (u,u’) in G,
to the root of Hg(u'), and define the length of this
new edge as the value of the root.

4. Make a node for each v in G, and make a pointer
from this new node to the root of Hg(v). Let the
length of the new edge be the value of the root.
Let this new graph be P(G).

5. We can find a heap H,(G) in P(G) for any v, think-
ing the root as the node made in step 4 for v, and
the value of a node as the length from the root to
the node. Find the k£ smallest nodes in this virtual
heap H,(G). There is a one-to-one correspondence
between the nodes in H,(G) and the paths from v
to t in GG, and we can easily restore the path from
the node of the heap.

This algorithm is very efficient for finding the &
shortest paths from all the vertices to one destination,

or one source to the other vertices. But, for the 2-ter-
minal problem, this algorithm may search much more
vertices than necessary.

3. New Approach for the 2Terminal £ Shortest
Path Problem

3.1 How to Use A* Algorithm

How to use A* Algorithm in computing the k shortest
path in 2-terminal problem is discussed in this section.

If a dual feasible estimator is given, the replace of
the length of an edge I(u,v) with I'(u,v) described at
(2) in Theorem 1 does not change the k shortest paths:

Theorem 3: The k shortest paths from s to ¢ on a
graph in which the length of the edge (u,v), or I(u,v)
is replaced by I'(u,v) as in (2) are same as those on the
original graph.

Proof: Let p be a path from s to ¢, and hs be a
dual feasible estimator for s. Then the length of p, or
length'(p) in new graph is described by the length of p,
or length(p) in the original graph as follows:

length'(p) = Z ' (u,v)
(u,v)Ep
= Z I(u,v) + hs(t) — hs(s)
(u,v)€P
= length(p) + hs(t) — hs(s) (5)

According to this, all the paths on the new graph from
s to t are hs(s) — hs(t), which is constant, shorter than
those on the original graph. This means the k short-
est paths on the new graph are same as those on the
original graph. a

The same is the case with I'(u,v) of (3) in Theo-
rem 2:

Theorem 4: The k shortest paths from s to ¢t in a
graph, in which the edge length I(u,v) is changed to
I'(u,v) as in (3), are same as those in the original graph.
Proof: All the paths from s to ¢ in the modified graph
are only a constant shorter than in the original:

length'(p) = Z I'(u,v)
(u,v)Ep

2 l(u,v) +h
(u,v)€p

= length(p) + h (6)

h is constant, that is (hs(t) + he(s) — hs(s) — h(t)) /2.
This means the k shortest paths are same in the two
graphs. |

Thus we can use either unidirectional or bidirec-
tional A* algorithm implicitly by changing the length
of the edges.

IEICE TRANS. , VOL. E00-D, NO. 00 1998

3.2 Unidirectional Method

Letting popt be the shortest s-t path, we define A(p) for
a s-t path p as length(p) — length(popt). If we can use
the upper bound of this A(p), or A, where p is within
the k shortest paths, we can easily reduce the searched
vertices.

When we do not need paths a constant longer than
the shortest one or we only want to list the paths a con-
stant longer than the shortest one at most, we should
let A be this constant. If we can know approximate
value of A by experience or other methods or really
know the value, we can use it.

The algorithm is very simple, and the outline of
this is as follows:

1. If a dual feasible estimator for ¢ is given, replace
length of each edges as in Theorem 3.

2. Search from ¢ by the Dijkstra method until the
shortest path from s to t is discovered.

3. Search successively until a vertex v from which the
shortest path to ¢ is more than A longer than that
from s.

4. Find the k shortest paths in the searched region,
by Eppstein’s algorithm.

If a path passes a vertex v not in the searched re-
gion, this path is longer than length(p,p) + A because
the shortest path from v to t is longer than it. So, all
the obtained k paths are shorter than length(popt) + A,
which is supposed to be longer than the actual kth
shortest path. Thus, the obtained k£ paths are the ac-
tual k shortest paths.

3.3 Bidirectional Method

The Eppstein’s algorithm can be used both on the
shortest path tree from the source and on that to the
destination. Thus it is a natural idea to use a bidirec-
tional method for finding the k shortest paths. But it
needs some modification to the Eppstein’s algorithm.

The heaps obtained by the Eppstein’s algorithm
are not enough if we use a bidirectional method. To
solve this problem, we propose a new path heap graph
involving another heap called H,,;;. We also use A
defined at 3.2.

In the algorithm, let S and T be sets of searched
vertices from s and ¢ by bidirectional Dijkstra method,
ps and p; be potentials, ds be the length of the shortest
path from s to the last vertex added to S, and d; be the
length of the shortest path from the last vertex added
to T to t. The following is the outline of the algorithm:

1. If a dual feasible estimator for s and that for ¢ are
given, change the length of the edges as in Theo-
rem 4.

SHIBUYA et al: FINDING USEFUL DETOURS IN GEOGRAPHICAL DATABASES

2. Search by the bidirectional Dijkstra method both
from s and ¢, until the shortest path (pp) is dis-
covered.

3. Continue searching until ds + d; is longer than
length(popt) + A.

4. Let set of edges F' be {(u,v)|(u,v) € E,u € S,v €
T — S}, and set of vertices U be {v|(u,v)
€ F}. (see Figure 1) Construct heap H,,;q of ver-
tices in U ordered by the value ¢(v) = ps(v)+pe(v).
Note that v is not in S but ps(v) is not +oc. In
this step, if g(v) is larger than length(pop) + A,
we can ignore v.

S

Fig. 1 Situation of U

5. Construct Eppstein’s path heap graph on the
shortest path tree from s, only in Gy = (S +
U, {(u,v)|u € S,v € S+ U}) and on that to ¢ only
in G¢ = (T, {(u,v)|u,v € T}). Then let the heap
found in the graph be Hy(v) and Hy(v).

6. For each v in U, make a new edge from a node
in Hp;q which represents v, to the roots of Hy(v)
and H;(v), whose length is the value 6 of the roots.
Then think as if there is an edge from each node
in Hs(v) to the root of Hy(v). (This pointer is de-
cided when the path heap graph is searched.) The
length of it is also § of the root of H;(v). Note that
the completed virtual heap is 5-heap.

7. Find the k shortest paths from the root of the en-
tire heap by the same way as in Eppstein’s algo-
rithm.

Notice that, in step 5, we have to construct H; only
in T. It is because once a s-t path has gone out from
S, the rest of the path cannot pass any vertices out of
T, because d; + d; is guaranteed to be larger than any
path within the k shortest paths.

In step 4, H,,;q can be constructed by the modifi-
cation of the heap used for searching from s in step 2
and 3, which can be done in O(n) time. Add to this,
step 6 can also be done in O(n) time.

4. Detour Problem

‘Detour’ is a path which is short but overlaps little with
the shortest path. To find it is very important in route
navigation systems, ATM network, and so on. We dis-
cuss how to gain this detour based on the above algo-
rithms.

4.1 How to Compute Overlapping Length

In searching a detour, the overlapping length of a de-
tour with the shortest path is an important factor. Let
this value for a path p be overlap(p). This length can
be computed very fast for every path encountered in
searching in the path heap graph. The following is the
outline of this procedure:

1. For each vertex v in V', compute the length of the
part of the v-t shortest path which overlaps with
the s-t shortest path. This can be done in O(n)
time, by the depth first search on the shortest path
tree to t for example. Then, let this value be ov(v).

2. For each sidetrack (u,v),
0" (u,v):

compute following

8 (u,v) = ov(v) — ov(u) (7)

3. When we search in the path heap and obtained a
path p, we compute the overlap(p) as follows. Let
q be parent(p) and e be sidetrack(p).

overlap(p) = overlap(q) + &' (e) (8)

Note that the same technique can be easily done
in the bidirectional method described in 3.3.

4.2 Definition of ‘Detour’

‘Detour’ is not so clear concept. Thus we must define
it precisely. In easiest way, we can define it as follows
for example:
Definition 2: ‘Detour’ is the shortest path which
has overlap, which is shorter than the half of the short-
est path length, with the shortest path length.
But this definition requires searching the path heap in
order until a desired path will be found, which means
it takes O(klogk) time in checking k paths, and set-
ting A is difficult. Add to this, the obtained detour
by this definition may branch off and join the shortest
path many times. In the car navigation system, such a
detour is not desirable.

Taking these things into consideration, we define
‘detour’ as following:
Definition 3: ‘Detour’ is A longer than the shortest
path at most, branch off and join the shortest path
only once, and has the smallest overlap with the short-
est path among such paths. If several paths satisfies
these constraints, choose the shortest one.

Notice that the detour defined in either Definition 2
or 3 has no cycles unless there exists a zero-length cycle
in the graph.

4.3 How to Obtain Detour

We discuss how to get the detour defined in Definition 3,
in this section.

4.3.1 Unidirectional method

The method to search the paths which branch off and
join the shortest path only once in the path heap is as
follows: If u of (u,v) = sidetrack(p) is on the shortest
path tree to ¢ and parent(p) is not the shortest path,
Or Popt, We only have to search children of p in Hr.
This technique can be also applied in the bidirectional
method, and note that listing paths which branch off
and join the shortest path ¢ times can be done with a
similar method.

Add to this, notice that, if there is longer over-
lap from s to sidetrack(p) along p than the temporary
shortest overlap, we also have to search children of p
only in H7. To make this technique more efficient, we
should not search the children of pyp: in Hr(s) from the
root of it, but search H,,:(v) and its children from s to
t along popt. The same technique can be used in finding
the detour defined in Definition 2. But this technique
is difficult to use with the bidirectional method.

4.3.2 Bidirectional method

If the length of the edges are all integers, and A is not
very large, we can compute the detour efficiently based
on the bidirectional method in 3.3. The outline of this
algorithm is as follows:

1. Construct Hy; and H; as in 3.3.

2. Let vpiq be the nearest vertex to s along p,p: in
U. For each vertex v in U except for v,,;4, do the
following;:

a. If g(v) is larger than length(p,pt) + A, skip (b)
and (c).

b. Let A be A—q(v). Search H(v) for s-v paths
which branch off p,,: only once as in 4.3.1,
and not more than A/, longer than the short-
est s-v path in G4. At the same time, make a
table T, whose size is A! + 1 and fill in T, [i]
the path whose overlapping length with p,pt
is the shortest among the paths s.t. A(p) < 4.

c. Search Hy(v). Note that, for some i, if there
is no path in T),[i] or the overlapping length of
the path in T, [¢] is longer than the temporary
shortest overlapping length, or I, we only have
to search paths less than [— ¢ longer than the
v-t shortest path.

IEICE TRANS. , VOL. E00-D, NO. 00 1998

3. If the length of the v,,;4-t shortest path in Gy, or [,
is shorter than the temporary shortest overlapping
length, find the detour between s and v,;q in G
using A! — 1 as A.

4. If the length of the s-v,,;4 shortest path in G, or [,
is shorter than the temporary shortest overlapping
length, find the detour between v,,;¢q and ¢ in G
using A! —1 as A.

In step 2, we can search either H(v) or Hy(v) first.
To make this technique more efficient, we should sort
v in U ordered by ¢(v), and search from the vertex of
which ¢(v) is large. This is because if g(v) is larger, the
overlapping length tends to be shorter. In step 3 and
4, use the techniques in 4.3.1.

4.3.3 Method for the planar graph

A planar graph has a good feature. If overlap(p) is
larger than overlap(parent(p)), there are three cases.
If popt and parent(p) are like in Figure 2, p must take
the form of (a), (b) or (c). If p takes the form of (a),
we have to search the children of p only in Hr.

Determining which form p takes is a little difficult.
But, fortunately, in most cases p takes the form of (a).
It means, if we do not require the exact detour defined
in Definition 3, we can ignore the cases (b) and (c).

Fig. 2

Searching paths in a planar graph

The road network is not a planar graph, but prop-
erty of it is similar to it. Hence, this technique may
have some effect on the road network.

5. Experiments on Road Network

In this section, we investigate the efficiency of algo-
rithms described above through experiments on the ac-
tual road network of 160 kilometers times 80 kilome-
ters region in Tokyo metropolitan area. As the length
of each edge, we used the necessary time (seconds) to
pass the edge, which is rounded off to an integer, rather
than the distance along the edge. Accordingly, we used
Euclid distance to ¢t and from s divided by the maxi-
mum speed, that is 105 kilometers per hour, as hs; and
ht-

5.1 Property of the Road Network

Figure 3 shows A of the kth shortest path in case of
Hamadayama to Hongo. According to this, A increases

SHIBUYA et al: FINDING USEFUL DETOURS IN GEOGRAPHICAL DATABASES

in proportion to log k. This may help the estimation of
A used in Section 3.

A (se0)
T

140 — |

100 — —

80 — —

60 |- |

20 —

| | | | | |
1 10 100 1000 10000 100000

Fig. 3 Relation between the k and A

In the algorithms in Section 4, we search paths re-
gardless of cycles. If there are many paths with cycles
among suboptimal paths, the algorithms may not work
well, because the detour defined by Definition 3 has no
cycle. Table 1 shows the ratio of paths with cycles in
the suboptimal paths whose A’s are smaller than 100,
in cases (a) Yumenoshima - Hongo (b) Narita - Ichihara
and (c) Sayama - Chosi.

Table 1 The number of paths within A < 100

i
o~

d(s,t) f paths
1010 780299
2851 202531
8769 674630

paths with cycles (%)
14828 (1.9%)
17857 (8.8%)

111644 (16.5%)

~
o ®
NN

According to this table, the paths with cycles are
relatively rare among the suboptimal paths. This ta-
ble also shows that the number of suboptimal paths
increases in cases such that the paths passes the urban
areas or the distance between the terminals is large.
The example (a) is the former case and (c) is the latter
case.

5.2 Efficiency of the Extended Eppstein’s Algorithm

Table 2 shows the number of the searched nodes in
finding the k shortest path in case of Hamadayama to
Matsudo. Note that (f) means forward search and (b)
means the backward search. In this experiment, we
used the actual A of the kth shortest path as A, so
that we can evaluate the best case of these algorithms.

7
Table 2 Searched nodes by various algorithms
k 1 10 100 1000 10000
length 2165 2170 2184 2203 2224
Dij. (b) | 11162 11203 11305 11422 11545
A* (b) 5816 5871 6034 6252 6542
Bi-Dij. (f) 2812 2812 2882 3011 3135
(b) 2794 2794 2874 3012 3150
Bi-A* (f) 1325 1325 1388 1557 1752
(b) 1352 1352 1402 1555 1743

According to this table, the number of the searched
nodes by the bidirectional method is about half of that
by the unidirectional method in both of the cases using
A* algorithm and Dijkstra method. On the other hand,
the number of them using A* algorithm is also about
half of that not using A* algorithm in both of the cases
unidirectional and bidirectional. Accordingly, the algo-
rithm using the bidirectional A* algorithm is far better
than those of the others. But, as k increase, the effect
of the bidirectional A* algorithm seems to decrease, so
it may not so efficient if k£ is enormously large. To sum
up, using the bidirectional A* algorithm is best, as long
as k is not much larger than the size examined in this
experiment.

5.3 Efficiency of the algorithms for the Detour Prob-
lem

Table 3 shows the efficiency of algorithms in cases (1)
Hamadayama-Hongo and (2) Sayama-Matsudo. In the
table, (a) is the number of paths at most A longer than
Popt, (b) is that of paths who branch off and join pop,
among them, (c) is that of searched paths by the algo-
rithm in 4.3.1, (d) and (e) are those of searched paths
by the algorithm in 4.3.2. In (d), we searched Hj first,
and in (e), H; first. (f) is the overlapping length with
Dopt Of the obtained detour and its ratio to the length

of Popt -
Table 3 Searched paths by various algorithms

(1) Hamadayama - Hongo (length(popt) = 891)

A 20 40 60 80 100 120
(@ | 11 48 261 1180 5115 20246
(b) 9 35 185 869 3880 15348
(c) 1 6 67 375 1979 8109
(d) 2 14 97 362 1542 5883
(e) 2 28 94 237 891 3115
) 157 157 58 58 58 58
(17.6%) (17.6%) (6.5%) (6.5%) (6.5%) (6.5%)

(2) Sayama - Matsudo (length(popt) = 3256)

A 20 40 60 80 100 120
(@) | 466 7174 61544 418016 2406750 12474190
(b)| 108 324 1078 3259 12638 63811

¢) | 107 273 954 3004 11973 37466
d) | 69 136 451 1290 5395 8689

—~ e~
— =

69 136 451 1295 5379 8670
() | 3159 1837 1837 1837 1753 1201
(97.0%)(56.4%) (56.4%) (56.4%) (53.8%) (36.9%)

According to 5.1, the farther the 2 terminals are,
the more suboptimal paths exists. In algorithm in 4.3.2,
if we search H first, the searched paths in H; is re-
duced, and vice versa. Add to this, if A is large in
compared with the distance of two terminals, the ver-
tices in U may be nearer to ¢ than to s. It means that
we should search H; first in such a case. This can be
seen in the case (1) especially when A is larger than 80
seconds. But in case of (2), such phenomenon is not
seen because the distance of the 2 terminals is much
larger.

According to the table, in general, the best method
is to use the algorithm in 4.3.2 and search H; first, but
there are some cases that another algorithm is better.

Figure 4 shows the obtained detour from Sayama
to Matsudo when A is 100 seconds and 120 seconds.
In the figure, the thickest line is the shortest path, and
the relatively thinner line which branch off it is the ob-
tained detour. Note that the left terminal is Sayama
and the other Matsudo.

In a road network, intersections cannot be nodes in
the graph, for the reasons that costs of turning left or
right or going straight in intersections differ, we cannot
make U-turn in most intersections, and so on. Accord-
ingly, we let a node in the graph be one side of a road
segment between intersections. Hence, in a road net-
work, the detour defined in Definition 3 can cross the
shortest path at intersections.

The road network is not a planar graph, but we
must examine the effect of the technique in 4.5.% be-
cause the road network may have a feature similar to a

planar graph.
NG, %

Fig. 4

Detour between Sayama and Matsudo

IEICE TRANS. , VOL. E00-D, NO. 00 1998

Table 4 shows the effect of this technique. This
table shows the number of searched paths in cases of
(1) Hamadayama to Hongo and (2) Sayama - Matsudo
(same cases as in Table 3) by the algorithms (a) unidi-
rectional method and (b) bidirectional method search-
ing H; first.

Table 4 Effect of the technique in 4.3.3.

20 40 60 80 100 120

)| 1 6 67 374 1952 8000
Y| 2 26 81 190 580 1658
) | 107 261 808 2443 10290 31316
)

(1)
(2)

| P

68 133 385 1018 4472 24321*
* Failed finding the optimal solution

o~ o~~~

According to this, in most cases, the optimal de-
tour is obtained, and the number of the searched paths
are decreased. But in computing the detour from Sa-
yama to Matsudo when A is 120 by the algorithm (b),
we failed finding the optimal one but the same one as
when A = 100. Figure 4 shows the reason of this. The
detour crosses the shortest path when A is 120. Such
paths are difficult to obtain with this technique. Add to
this, we searched with this technique much more paths
than without it in this case. It is because we failed to
find the path which has little overlap with the shortest
path, and as a result of it, we could not cut away the
unnecessary paths in searching.

Thus, it is not strongly recommended to apply this
technique to the road network. But if we deal with a
planar graph, we should take this technique into con-
sideration.

6. Conclusions

In this paper, we first reviewed algorithms for the short-
est path problem such as the Dijkstra method, A* algo-
rithm, bidirectional Dijkstra method, and bidirectional
A* algorithm, and also discussed about Eppstein’s al-
gorithm which is for the k£ shortest paths problem.

Based on these algorithms, we proposed how to im-
prove Eppstein’s algorithm for the 2-terminal k& shortest
paths problem, using the upper bound of the length of
the kth shortest path. We first showed we can use the
A* algorithm in finding the k shortest paths both in
the unidirectional method and in the bidirectional one.
Then, we extended the Eppstein’s algorithm to use with
the bidirectional methods.

For the application of these algorithms, we dis-
cussed on the detour problem. This problem is a prob-
lem of finding a short path which overlaps little with
the shortest path. First, we defined what the ‘detour’
is, and then proposed the algorithms to find it. We
described a technique when we use the unidirectional
method, then another algorithm using the bidirectional
method which can be used under certain constraints,
and an approximate method for the problem in a pla-
nar graph.

SHIBUYA et al: FINDING USEFUL DETOURS IN GEOGRAPHICAL DATABASES

These algorithms are examined in the experiments
in the actual road network. For the k shortest path
problem, if a proper upper bound of the kth shortest
path length are given, the extended Eppstein’s algo-
rithm using bidirectional A* algorithm showed the best
performance. For the detour problem, the method us-
ing the bidirectional method is more efficient than the
other algorithms in most cases. In this problem, the
approximate technique for a planar graph is not so ef-
fective for the road network which is not a planar graph.

Constructing an efficient algorithm for the 2-termi-
nal k shortest path problem without using the value A,
and algorithms fit for the road network, which is con-
structed on hierarchical structures, for various problems
like described above are remained as a future work.

The algorithmic results in this paper surely en-
hance the advanced use of geographical databases.

References

[1] D. Eppstein. “Finding the k Shortest Paths”, SIAM J.
Computing, 1998, to appear.

[2] T.Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, T.
Hashimoto, K. Tenmoku and K. Mitoh. “A Fast Algorithm
For Finding Better Routes By Al Search Techniques”, IEEE
VNIS?94, 1994, pp.291-296.

[3] P. E. Hart, N. J. Nillson and B. Rafael, “A Formal Basis
for the Heuristic Determination of Minimum Cost Paths”,
IEEE Trans. Sys. Sci. and Cyb. SSC-/, 1968, pp.100-107.

[4] T. Hiraga, Y. Koseki, Y. Kajitani and A. Takahashi, “An
Improved Bidirectional Search Algorithm for the 2 Terminal
Shortest Path” (in Japanese), The 6th Karuizawa Workshop
on Circuits and Systems, 1993, pp.249-254.

[5] M. Luby, and P. Ragde, “A Bidirectional Shortest Path Al-
gorithm With Good Average-Case Behavior”, Proc. 12th
International Colloquium on Automata, Languages and Pro-
gramming, LNCS 194, 1985, pp.394-403.

[6] G. N. Frederickson. “An Optimal Algorithm for Selection
in a Min-Heap”, Information and Computation, 104, 1993,
pp.197-214.

[7] N. Katoh, T. Ibaraki and H. Mine, “An Efficient Algo-
rithm for K Shortest Simple Paths”, Networks, vol.12, 1982,
pp.411-427.

[8] T. Shibuya and H. Imai, “New Flexible Approaches for Mul-
tiple Sequence Alignment”, J. Computational Biology, vol.4,
no.3, 1997, pp.385-413.

[9] P. H. Winston, “Artificial Intelligence”, Addison-Wesley,
1977.

