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Abstract

The multiple sequence alignment problem is applicable and important in various fields in molec-
ular biology such as the prediction of three dimensional structures of proteins and the inference
of phylogenetic tree. However, the optimal alignment based on the scoring criterion is not always
the biologically most significant alignment. We here propose two flexible and efficient approaches
to solve this problem.

One approach is to provide many suboptimal alignments as alternatives for the optimal one.
It has been considered almost impossible to investigate such suboptimal alignments of more
than two sequences because of the enormous size of the problem. We propose techniques for
enumeration of suboptimal alignments using Eppstein algorithm. We also discuss what kind
of suboptimal alignment is unnecessary to enumerate, and propose an efficient enumeration
algorithm to enumerate only necessary alignments.

The other approach is parametric analysis. The obtained optimal solution with fixed param-
eters such as gap penalties is not always the biologically best alignment. Thus, it is required
to vary parameters and check how the optimal alignments change. The way to vary parame-
ters has been studied well on the problem of two sequences, but not on the multiple alignment
problem because of the difficulty of computing the optimal solution. We propose techniques for
this parametric multiple alignment problem, and examine the features of obtained alignments
by various parametric analyses.

For both approaches, this paper performs experiments on various groups of actual protein

sequences, and examines the efficiency of these algorithms and property of sequence groups.



1 Introduction

The multiple alignment is a problem to obtain the alignment of multiple sequences with the
highest score based on some given scoring criterion between characters. This problem appears
in various fields of molecular biology such as the prediction of three dimensional structures of
proteins and the inference of phylogenetic tree.

The method using dynamic programming (DP) is well-known for the alignment problems
(Dayhoff et al. 1978, Gotoh 1995, Spouge 1989, Waterman 1995). This method requires O(n¢)
time and space for d sequences of length at most n. This method can be applied when n is
not so large and d is 2 or 3, but for larger problems, it is impractical. The A* algorithm is
a well-known algorithm for the general optimization and search problems. This algorithm can
reduce the search space dramatically if a powerful estimator is used. Thus the A* algorithm
with upper bounding operation is proposed recently for computing the optimal alignment of
multiple sequences (Tkeda & Imai 1994, Tkeda 1995).

The optimal alignment based on the scoring criterion is not always the biologically most
significant alignment. We propose two methods to cope with this problem. One is to enumerate
suboptimal solutions and the other is to do parametric analysis.

A suboptimal alignment is an alignment whose score is close to the optimal one. In fact, in
case of aligning two sequences, the suboptimal alignments problem is well-studied (Chao 1994,
Naor et al. 1993, Shibayama et al. 1993, Zuker 1991) and used for many applications such
as predicting protein structure and so on (Saqi et al. 1991, Saqi et al. 1992, Waterman et
al. 1987). In multiple alignment problem, we can see suboptimal alignments of each pair of
sequences with these methods for only two sequences as in (Zuker 1991), but these are not the
accurate suboptimal alignments of all the sequences.

Enumeration of the suboptimal alignments had not been considered as very practical even
in the case of aligning two sequences (Naor et al. 1993, Zuker 1991). But such enumeration
becomes easier because a new efficient algorithm for the k shortest paths problem is proposed
by Eppstein (Eppstein 1994, Shibuya et al. 1995). This algorithm enumerates the lengths of the
k shortest paths in O(k +n+ m) time and space if we are given the shortest path tree from the
source or to the destination for any graph with non-negative m edges and n vertices. Even if
we have to output the paths themselves, this algorithm requires only time linear to the output
size, add to the time given above. Note that the shortest path tree can be constructed with DP
or A* algorithm.

For this approach, we first discuss the method to obtain EFa, which can be done with some
extension of the A* algorithm. FEa represents all aligned groups of residues in optimal and
suboptimal alignments which are at most A worse than the optimal. Furthermore, based on
this extended A* algorithm and the Eppstein algorithm, we go on to discuss the methods for
the enumeration problem.

Number of suboptimal solutions is very large, and we should restrict the outputs to impor-
tant solutions if we know what kind of solutions is important. Hence we discuss what kind of
suboptimal alignment is unnecessary to enumerate, and propose an efficient technique to enu-
merate only necessary alignments. This technique is so splendid that it remains output size

sensitive even though we restricted solutions only to the necessary alignments in our concept.



For the other approach of parametric analysis, we first review the basic techniques for para-
metric analysis (Gusfield et al. 1992, Huang et al. 1994, Vingron et al. 1994, Waterman 1994,
Waterman et al. 1992, Zimmer 1997). and propose new techniques for multiple alignments. As
for the techniques, we use Eppstein algorithm to examine all the optimal solutions for one fixed
parameter, and upper bounding technique for the parametric alignment. In most of previous
works, they computed only one optimal solution for one fixed parameter in parametric analysis.
We enumerate all the optimal solutions because the parametric analysis is the analysis of optimal
solutions and we consider we should examine all optimal solutions. Fortunately, it is reasonable
to obtain with Eppstein algorithm.

Then we do a parametric study on gap penalties, score tables and weight matrices. Related
with the weight matrices, we show the (enhanced) A* algorithm is applicable for the weighted
multiple alignment problem. Weighted problem is considered only when the phylogenetic tree is
given, but our approach enables more flexible study of the weighted multiple alignment problem.
This technique may also be useful in constructing or tuning phylogenetic tree.

For both approaches, this paper performs experiments on various groups of actual protein
sequences, and examines the efficiency and practicality of these algorithms and property of

sequence groups we use.



2 Preliminaries

In this section, we first explain the definition of the multiple alignment problem, and then survey

the exact algorithms for it briefly.

2.1 Multiple Sequence Alignment Problem

In this section, we describe what the multiple sequence alignment problem is. These are given

in this problem:
e A fixed set of alphabets ¥ including a gap which is denoted by -.
e A score function between characters s : ¥ x ¥ — R.

Each member in ¥ except for a gap is called a character, and a finite string of characters is
called a sequence. On the other hand, a finite string of members in X is called a padded sequence.
Then the set of ith elements of two or more padded sequences is called a ¢th column of the set
of the sequences. Furthermore, a set of consecutive columuns is called a region. A set of padded
sequences (57, S55,...,5)) is called a d-alignment or simply an alignment of (Sy,Ss,...,Sq) if
and only if all of the padded sequences have same length [, ith column contains at least one
character for any i(1 < ¢ < [I), and (51, S),...,S)) becomes (Si,S,...,54) if all gaps are
deleted. Furthermore, the (pairwise) projection A;; of an alignment A = (S7,S5,...,57) is
defined as the alignment obtained from (S, S;) by removing columns without any characters.

The score of a 2-alignment is defined as the summation of scores of all columns obtained
directly with the score function. The score of a d-alignment is defined as the summation of the
scores of all the pairwise projections of the d-alignment. Finally, we can define the problem:
the alignment problem is a problem of finding the alignment of given sequences with the largest
score.

In this definition of the problem, the gap penalty is linear to sum of the length of gap
sequences. This kind of a gap penalty is called the linear gap penalty. If there is some starting
gap penalty which is costed to the starting of the gap sequence, it is called the affine gap penalty.
In this thesis, we mainly deal with the linear gap penalty.

The weighted sum-of-pairs multiple alignment problem (Altsuchul 1989, Gotoh 1995) is a
generalization of the simple sum-of-pairs multiple alignment problem described above. This
version of the problem is often used when the phylogenetic tree is given. In this problem, we
optimize sum of weighted score of each pairwise sequences alignment: we multiply the score of
the alignment of the ¢th and the jth sequence by w;;. We call (w;;) a weight matrix. Note that
(w;;) is always 0 for any 7. We deal with this kind of problem only in the section 4.3.3.

The number of characters in ¥ is 20 in the case of aligning protein sequences, and it is 4
in the case of aligning DNA sequences. The score function is usually given by a score table.
Table 1 shows the most famous and widely-used score table called PAM-250 (Altsuchul 1991,
Dayhoff et al. 1978). It is one of the variations of PAM matrices proposed by Dayhoff (Dayhoff
et al. 1978).

The multiple alignment problem can be easily transformed to the shortest path problem on

some grid-like directed acyclic graph with no negative edges. Let Si be the kth sequence of d



sequences to be aligned, and ny = O(n) be the length of Si. Then suppose a directed acyclic
graph G = (V, E) such that V' = {(z1,...,24)|z; = 0,1,...,n;} and E = {(v,v +e)|lv € V,e €
[0,1]¢, ¢ # 0}. In this graph, a path from s = (0,...,0) to t = (nq,...,nq) corresponds to an
alignment of the sequences.

In the alignment problem of two sequences, the length of an edge is defined from the score
table between characters, and the length of a path from s to t equals the score of the correspond-
ing alignment. Figure 1 shows an example of it. In the graph, each diagonal edge corresponds to
the match of characters, and each horizontal or vertical edges corresponds to the inserted gaps.
In the multiple alignment problem, the sum of all the scores for alignments of pairwise sequences
is generally used as the score. This score of the alignment equals the length of the corresponding
path, if we define the length of each edge as the sum of the lengths of the corresponding edges
in the pairwise projections of the alignment. In this way, the longest path problem from s to ¢
in this graph is equivalent to the original alignment problem. This longest path problem can be
easily transformed to the shortest path problem by reversing the signs of the lengths (Gupta et
al. 1995, Ikeda & Imai 1994, Tkeda 1995). Thus we can use shortest path algorithms for graphs

like above to compute the optimal alignment of given sequences.

2.2 Exact Algorithms for Alignment Problem
2.2.1 Dynamic Programming

The alignment graph presented in the section 2.1 is a layered graph and we can easily use
dynamic programming (DP) to obtain the shortest path (Dayhoff et al. 1978, Gotoh 1992,
Gotoh 1995, Spouge 1989, Waterman 1995) in time linear to the size of the graph size.

Algorithm 1 (Dynamic Programming) Let [(u,v) be the length of the edge (u,v) in the
alignment graph, s be the source (0,0,...,0) and t be the destination (ni,na,...,ng).

1. Let p(s) be 0.

2. Fori=1to1i= Z n; do the following:
1<j<d
For all v = (xg,x1,...,2q) such that Z xp =i, compute the following value p(v), and
1<k<d
let previous(v) be v — e which satisfies this equation (1). Note that this p(v) equals to the

shortest path length from s to v.

p)= _min (0o =) +1(v —c,0) 1)

3. We can obtain the shortest path by tracing back previous(v) from the destination t.

But the DP requires O(n?) memory space where n is the length of the longest sequence and
d is the number of sequences, because it needs to store all vertices of the graph in memory.
Thus the DP requires too much memory in the case of large d, and the DP can only deal with

alignment of 2 or 3 sequences in ordinary case of aligning actual protein sequences.



2.2.2 Dijkstra Method

Dijkstra method is the most famous algorithm for the shortest path problem on graphs without

negative edges. The outline of this algorithm is as follows:

Algorithm 2 (Dijkstra Method) Let the graph in assumption be G = (V, E), l(v,w) be the

length of the edge (v,w) which is always non-negative, s be the source and t be the destination.

1. Let p(v) be the potential of a vertex v, which is initialized as +oo except for the source s

whose potential 1s zero, and S be an empty set.
2. Add vertex vo which has the minimum potential in V — S. Then, stop iof vo s t.

3. For all edges (vo,v) in E, if p(vo) + (vo,v) ts smaller than p(v), replace p(v) with p(ve) +
l(vo,v) and replace the path kept in v with the shortest path from s to vo added with the
edge (vo,v).

4. Go to step 2.

This algorithm requires O(m + nlogn) time where m is the number of the edges and n is the
number of the vertices in the graph, which is worse than DP, and this algorithm itself is not so
useful for alignment problem. But it will be remarkably more efficient if it is extended to the

A* algorithm as in the next section 2.2.3.

2.2.3 A* algorithm

The A* algorithm will not search the whole graph in finding the shortest path if a good estimate
for the shortest path length from each vertex to the destination ¢ can be used.

The basic algorithm for the A* algorithm is like following:

Algorithm 3 (A* Algorithm) Let the graph in assumption be G = (V, E), l(v,w) be the
length of the edge (v, w) which is always non-negative, s and t be the source and the destination,
and h(v) be heuristic estimate for the length of the shortest path to t which is not longer than

the actual one.

1. Let p(v) be the potential of a vertex v, which is initialized as +oo except for the source s

whose potential 1s zero, and S be an empty set.
2. Add vertex vy, whose value of p(v) + h(v) is smallest in V — S, to S. Then, stop if vy 1s t.

3. For all edges (vo,v) in E, if p(vo) + l(vo,v) ts smaller than p(v), replace p(v) with p(ve) +
[(vg,v) and replace the path kept in v with the shortest path from s to vy added with the

edge (vo,v). If v is in S, remove it from S.
4. Go to step 2.

In this algorithm, p(v) for vertex v in S is also the length of the shortest path from s to v.
p(v) + h(v) is the estimate for the shortest path from s to ¢ via v. The searched vertices by the
A* algorithm is always within searched vertices by the Dijkstra method. In this way, the A*



algorithm can get the shortest path more effectively. If the estimate h(v) equals to the actual
shortest path length from v to t, this algorithm searches only on the shortest path.

The estimate h(v) must not be longer than the shortest path length from v to t, because
the final obtained path must not be longer than the other paths. If some of the estimate h(v) is
longer than the actual shortest path, this algorithm is called A algorithm, which is often used
as an approximate algorithm for the shortest path problem.

In the A* algorithm, the shortest path from s may not appear first, and a shorter path may
be found in the future search, which is the reason of the removal of vertices from S in step 3.
It makes this algorithm rather inefficient. This can be avoided if the estimator is dual feasible.

The definition of ‘dual feasible’ is as follows:

Definition 1 The estimator h for the shortest path to t is called dual feasible if and only if h

satisfies the following comstraint:
V(u,v) € B l(u,v) + h(v) > h(u) (2)

If the estimator is dual feasible, the A* algorithm can be easily translated to the Dijkstra
method by modifying the length of the edges (Hsu 1994, Ikeda et al. 1994, Tkeda 1995):

Theorem 1 (Ikeda Hsu et al.) Let h be a dual feasible estimator for s. The Dijkstra method
on a graph in which the length of the edge (u,v), or l(u,v) is replaced by I'(u,v) as follows s
equivalent to the A* algorithm on the original graph.

U'(u,v) = l(u,v) + h(v) — h(u) (3)

Proof: ['(u,v) is non-negative because of dual feasibility of h. Thus, the shortest path can be
searched with the Dijkstra method in the modified graph. Let p be the shortest path from s to
v. Then the potential of v used in searching with the Dijkstra method on the modified graph is

described as follows:

pv) = > U(uv)

(uv)ep
= Z l(u,v) 4+ h(v) — h(s)

(uv)ep
This means the Dijkstra method on the new graph is equivalent to the A* algorithm on the
original graph, because h(s) is constant. O
Ikeda and Imai (Ikeda & Imai 1994) show the following estimator is very useful for alignment
problem in case d > 2. Let G;; be the corresponding graph to the alignment of S; and S;, v;; be
the corresponding vertex in G;; to v in G, and L*(u,v) be the shortest path length from u to v.
Then h(v) = 371 <;cj<a L*(wij, vij) can be used as a powerful estimator for the multiple alignment
problem. This estimator is easily be shown to be dual feasible, i.e. I(u,v)+ h(v) > h(u). Hence

the A* algorithm can be applied as following.

Algorithm 4 (A* algorithm for the Alignment Problem)

1. For each of i and j (1 <1i < j <d), apply DP to graph G;; from t;; to calculate L*(v;j,t;;)
for each vij in Vij. Then let h(v) be 371 <;<j<q L™ (wij, vi).-



2. Modify the length of edge (u,v) in G as follows, using h(v) above, and compute the shortest
path with Dikstra method.

U'(u,v) = l(u,v) + h(v) — h(u) (4)

Note that the time and space used for the DP in the step 1 is negligible, if d is large. This A*
algorithm can deal with alignment problem of 5 to 6 normal sequences in reasonable time.

A vertex in the graph for the multiple alignment has 2¢ — 1 edges going out from it, and the
A* algorithm examines all the descendant vertices and keeps in a heap the information about
all of them. If an upper bound L™ (s,t) for the s-t shortest path, which corresponds to the lower
bound of the score of the alignment, is given, the necessary space for the heap can be reduced
(Ikeda 1995): we can ignore w such that L*(s,v) + l(v,w) > L*(s,t), when we examine the
descendant vertices of v. If the necessary space for the heap is reduced, the computing time of
the A* algorithm will be also reduced. This is called the enhanced A* algorithm.

Note that the branch-and-bound techniques implemented in MSA program (Gupta et al. 1995)
is equivalent to this enhanced A* algorithm, and Araki et al. (Araki et al. 1993) showed that

the estimated score computed directly by the score matrix is useful for the 2-alignment problem.



3 Enumeration of Suboptimal Alignments of Multiple Sequences

In this section, we deal with the first approach to the flexible alignment, that is enumeration
of suboptimal solutions. At first, we introduce the Eppstein algorithm (Eppstein 1994) which
is very efficient for enumeration of suboptimal paths in ordinary graphs. We then consider
how to obtain Fa efficiently for multiple alignment problem. Furthermore, we also discuss how
to enumerate the suboptimal solutions, introducing the new notation of classes of suboptimal

solutions. Based on these algorithms, we also do experiments on actual protein sequences.

3.1 Eppstein Algorithm

Eppstein (Eppstein 1994) proposed an algorithm which finds implicitly the k shortest paths for
the graph G with non-negative m edges and n vertices regardless of cycles, in O(m+n+k) time
after the shortest path tree is constructed. Eppstein (Eppstein 1994) also proposed an easier
algorithm of O(m + nlogn + k) time. Note that before the proposition of Eppstein, the best
algorithm for such a problem was O(k(m + nlogn)).

In the algorithm, we use 6(u,v) for the edge (u,v) as in equation (6). This 6(u,v) denotes
how much longer the path will be using the edge (u,v) than the optimal path by way of v, and
therefore this value is always non-negative.

If an edge (u,v) is on the shortest path tree, §(u,v) is zero, otherwise, it is called a sidetrack
and 6(u,v) may not be zero. If we go along an s-t path p other than the shortest path, there
must be one or more sidetracks on p, and we define sidetrack(p) as the nearest sidetrack from
s within them.

Let (tail(p), head(p)) be sidetrack(p). Then we can suppose a heap, in which the parent of
a path p is a path which is same as p from head(p) to t, but go along the shortest path from
s to head(p) instead of using sidetrack(p). We define this parent of p as parent(p) and we call
p a child of parent(p). The root of the heap is the shortest path, and all the paths from s to
t appear in the heap once. In this heap, p is §(sidetrack(p)) longer than parent(p). Figure 2
shows the path heap of the alignment graph of two sequences KN and QK.

We call a heap i-heap if the node of the heap has only 7 children at most (it is not required
to be balanced). The basic concept of the Eppstein algorithm is to modify this path heap to
4-heap, sharing as many nodes as possible. Figure 3 shows an example of this compact version
of path heap of the same alignment graph in Figure 2, in which some of the nodes are shared
and the number of nodes in it is reduced.

From this heap, we can obtain the k shortest paths in O(k) time (Frederickson 1993), or
O(klog k) time in sorted form. The following is the outline of this algorithm:

Algorithm 5 (Eppstein)
1. Construct the shortest path tree from s to all the other vertices.

2. For each vertex v, construct Hg(v), that is, a 3-heap of sidetracks (u',u), such that u is
on the shortest path from s to v, ordered by §(u',w). Let the length from the root of Hg(v)

to a node n be 6(u,v) if n represents sidetrack (u,v).



(a) For each vertex v, construct Hoyi(v), that is a 2-heap in which the root has only one
child, of sidetracks (v',v) ordered by §(v',v).

(b) For each vertex v, construct Hp(v), that is, a 2-heap of vertices on the shortest path
from s to v ordered by the value § of the root of the heap made in step 2-(a).

(¢) Merge Hyyy(v) and Hp(v) to make Hg(v). Then let the length of the edge from node
ny to node ny in this heap be 6(ny) — 6(nq).

3. For each v in G, make an edge from each node in Hg(v) which represents a sidetrack
(u',u) to the root of Hg(u'), and define the length of this new edge as the value of the root.

4. Make a new node for each v in G, and make an edge from this node to the root of Hg(v).
Let the length of this edge be & of the root. Let this new graph be P(G).

Then we can find a heap H,(G) in P(G) for any v, considering the root as the node made
in step 4 for v, and the value of a node as the length from the root to the node. There is a
one-to-one correspondence between the nodes in H,(G) and the paths from v to ¢ in G, and the
k smallest nodes in this virtual heap H,(G) correspond to the k shortest path. Moreover, we
can easily restore the path from the node of the heap, which can be done in O(n’) time where
n' is the size of the output alignment.

In this algorithm, we can also compute the k shortest paths using the shortest path tree to ¢,
which is the original method described in the Eppstein’s paper (Eppstein 1994). Note that the
shortest path tree in step 1 is constructed generally by the Dijkstra method, but for problems
such as the alignment problem, we can also use DP. Eppstein showed the step 2 can be done in
O(n + m) time, but this is a complicated algorithm and takes much time in practice, and we
use a far more easier algorithm that can be done in O(nlogn + m) time, which is also proposed
by Eppstein (Eppstein 1994): we make H¢(v) one by one from s to the other vertices along the

shortest path tree, sharing as many nodes as possible.

3.2 Upper Bounding Technique for Computing Fx

EA is a set of vertices which are used by the s-t paths whose lengths are at most A longer than
the shortest path, and it corresponds to all aligned groups of residues in optimal and suboptimal
alignments in original problem. The problem to compute it is well-studied (Ikeda 1995, Naor
et al. 1993, Shibayama et al. 1993, Zuker 1991). Here we show how to compute this set Ea
with A* algorithm (Tkeda 1995). For any path p from s to t, the modified path length by the
expression (4) is only h(t) — h(s) longer than the original length. This value is not relevant to

p, thus Ea on the modified graph is same as the original one.

Theorem 2 Any paths from s to t on a graph in which the length of the edge (u,v), or l(u,v)

is replaced by I'(u,v) as in (4) are a constant shorter than those on the original graph.

Proof: Let p be a path from s to ¢, and h be a dual feasible estimator for the shortest path
length to t. Then the length of a path p or length/(p) in new graph is described by the length
of p or length(p) in the original graph as follows:

length/(p) = Z I'(u,v)

(u,v)Ep



= Z l(u,v) + h(t) — h(s)
(u,v)€p
= length(p) + h(t) — h(s) (5)

According to this, all the paths on the new graph from s to t are h(s) — h(t), which is constant,
shorter than those on the original graph. O

Note that the following corollaries can be easily derived from this Theorem 2.

Corollary 1 Ea related to the paths from s to t on a graph in which the length of the edge

(u,v), or l(u,v) 1s replaced by I'(u,v) as in () are same as that on the original graph.

Corollary 2 The k shortest paths from s to t on a graph in which the length of the edge (u,v),

or l(u,v) is replaced by U'(u,v) as in (4) are same as those on the original graph.

Hence, first we modify the edge lengths with some dual feasible estimator, and then we can
obtain Ea with the Dijkstra method as follows (Ikeda 1995) on this modified graph.

Algorithm 6 (FA)
1. Search from s by the Duykstra method until the shortest path from s to t is discovered.

2. Search successively until a vertexr v, to which the shortest path from s is more than A

longer than the s-t shortest path, is discovered.

3. Modify the length of each edge (u,v) to 6(u,v) as follows:

6(u,v) = l(u,v) + L*(s,u) — L*(s,v) (6)

4. Apply the Diykstra method from t until a vertex from which the shortest path to t s longer
than A s discovered in this modified graph. Ea 1s the set of vertices searched in this step.

A vertex in the graph for the multiple alignment has 2¢ — 1 edges going out from it, and
the Dijkstra algorithm examines all the descendant vertices and keeps the information about all
of them. If an upper bound LT (s,t) for the s-t shortest path is given, we can also reduce the
necessary space for heap as in the case of computing the optimal solution with enhanced A*
algorithm: we can ignore w such that L*(s,v) + I(v,w) > LT (s,t) + A, when we examine the
descendant vertices of v.

In general, such kind of an upper bound is difficult to obtain. However, we can use the
actual shortest path length obtained in step 1 for the upper bound in step 2: we can ignore w
such that L*(s,v) + l(v,w) > L*(s,t) + A. Note that if we are given some upper bound of the

solution before computing the optimal, we can of course use it too.

3.3 Extending Eppstein Algorithm to Reduce Memory Space

In this section, we discuss how to enumerate efficiently all the suboptimal alignments whose
scores are at most A lower than the optimal one. The original Eppstein algorithm requires

searching all over the graph, and requires much memory. But it is evident that we only have to

10



apply the Eppstein algorithm in the subset Ea after computing Ea as in the previous section,
and then search the Eppstein’s heap structure with the depth first method.

However, if we use the easier O(nlogn 4+ m) algorithm in step 2 (b) of Eppstein algorithm
(algorithm 5) in section 3.1, we do not have to compute Fx additionally.

First, we must take the step 1 and 2 in the section 3.2, using upper bounding technique. These
procedures cannot be skipped. After these procedures, we implement the Eppstein algorithm as

follows:
Algorithm 7 (Eppstein algorithm with A*)
1. Construct the Eppstein’s heap structure only on the shortest path.

2. Search for suboptimal solutions which are at most A worse than the optimal (root) from
the root of Hs(G) with depth first search method. If we encounter Hg(v) which has not
been constructed yet, we construct the heap structures of vertices on the shortest path from

s to v for which we have not not constructed heaps yet.

With this method, when we finish enumerating all the suboptimal alignments, the set of

vertices for which we constructed the Eppstein heap is also Ea.

Theorem 3 The sets S of the vertices for which the Eppstein’s heap structures are computed

wn the algorithm 7 1s Ea.

Proof: We construct Hg(v) for all the vertices in Ex in the algorithm 7. Thus we can easily
see that Ex € S. A newly encountered vertex v for which Hg(v) has not constructed is in Ex,
because we only search suboptimal paths which are A longer than the shortest path at most.
Add to that, to obtain Hg(v) for some vertex v, we only have to compute Hg(u) for each vertex
u on the shortest path from the source s to v in the easier method of the step 2(b) in algorithm 5,
which is also trivially in Ea. Thus, we do not construct Eppstein’s heap structures for vertices
outside of FaA. Hence, we conclude that S = Fa. O

Thus we do not have to compute Ea additionally. Notice that this technique can be also

used in general graphs other than the graphs for alignments.

3.4 Classification of Suboptimal Alignments

In this section, we classify suboptimal alignments. We introduce a notion of alignment class D;

as follows:

Definition 2 D; s a class of alignments which have © regions different from the optimal align-

ment, which 1s 1 Dy.

Figure 5 shows some examples of suboptimal multiple alignments of protein fragments. (a)
is the optimal alignment, and (b), (¢) and (d) are suboptimal alignments. The regions bounded
by boxes are the regions which are different from the optimal alignment. (b) and (c) have only
one such region. On the other hand, (d) has two, both of which appear also in (b) or (c).

According to our notion of classification, the optimal alignment (a) is in the class Do (and
none of the others are in this class), suboptimal alignments (b) and (c) are in the class Dy, and

suboptimal alignment (d) is in the class Ds.
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Considering the fact that we can easily reconstruct (d) from (b) and (c), (d) is not so
important as (b) nor (c¢) and is sometimes unnecessary to enumerate. Thus, it will be a good

news if we can efficiently enumerate only the alignments in the classes Dy and D;.

3.5 Avoiding Unnecessary Alignments

The paths to which the alignments in the class D; corresponds branch off ¢ times from the
shortest path to which the alignment in the class Dy corresponds. Hence, we can consider a
very easy branch-and-bound technique to avoid such alignments in D; (i > 2) in enumeration of
suboptimal alignments: when we search the Eppstein’s heap structure, if head(p) of s-t path p
is on the s-t shortest path and parent(p) is not the shortest path, ignore p and its all conceptual
children (defined in section 3.1). Figure 6 shows the concept of this technique.

Recall that one of the good feature of the Eppstein algorithm is that we can obtain the
solutions in the time linear to the output size after having constructed the Eppstein heap. But
the above technique is not output sensitive, because it requires checking some of the nodes which
are in the class Dj. If there are many such solutions, the computing time becomes rather large.

Thus we modified the Eppstein algorithm to overcome this problem. Here we show how to
construct a heap structure whose nodes represent only alignments in classes Dy (the root or the

optimal solution) and D;:

Algorithm 8 (Modified Eppstein Algorithm)

1. Construct the shortest path tree from s to all the other vertices.

2. For each vertex v, construct Hg(v), that is, a 3-heap of sidetracks (u',u) ordered by 6(u',u)
as follows. Let the length from the root of Hg(v) to a node n be 6(u,v) if n represents

sidetrack (u,v).
(a) For each vertex v, construct Hyyi(v), that is a 2-heap in which the root has only one
child, of sidetracks (v',v) ordered by §(v',v).
(b) For each wvertex v that is not on the s-t shortest path, construct Hy(v), that is, a

2-heap of vertices on the s-v shortest path but not on the s-t shortest path ordered by
the value & of the root of the heap made in step 2-(a).

(c) For each vertex v on the s-t shortest path, construct Hr(v), that is, a 2-heap of
vertices on the s-v shortest path ordered by the value 6 of the root of the heap made
in step 2-(a).

(d) Merge Hyyui(v) and Hyp(v) to make Hg(v). Then let the length of the edge from node
ny to node ny in this heap be 6(ny) — 6(ny).

3. For each v on the s-t shortest path, make a node N,.

4. For each v in G, make an edge from each node in Hg(v) which represents a sidetrack
(u',u) to the root of Hg(u') if u' is not on the s-t shortest path, and define the length of

this new edge as the value of the root. Otherwise, make an edge from the node to N, .

5. Make a new node for each v in G, and make an edge from this node to the root of Heg(v).
Let the length of this edge be & of the root. Let this new graph be P(G).

12



Once the heap was constructed, what we should do next is same as in the original Eppstein
algorithm: we only have to search from the root of the virtual heap. Accordingly, we can
efficiently enumerate only the alignments in class D, and apparently it is output sensitive
algorithm once the heap is given. We can easily see that this algorithm can be also used with
A* algorithm using the techniques in section 3.3.

We can also extend this algorithm for enumeration of alignments in class D; (¢ < ¢) for any

¢ in the same way, though the algorithm becomes much more complicated:

Algorithm 9
1. Construct the shortest path tree from s to all the other vertices.

2. For each vertex v, construct heaps Hg)(v) (0 <i < ¢ for the vertices on the s-t shortest
path, and 0 < i < ¢ for the others), a 3-heap of sidetracks (u',u) as follows. Let the length
from the root of Hg) (v) to a node n be 6(u,v) if n represents sidetrack (u,v).

(a) For each vertex v, construct Htgz)t(v) (0 < i < ¢ for the vertices on the s-t shortest
path, and 0 < i < ¢ for the others), that is a 2-heap in which the root has only one
child, of sidetracks (v',v) ordered by §(v',v).

(b) For each vertex v that is not on the s-t shortest path, construct ¢ — 2 heaps Hj@(v)
(0 < i < c¢), all of which are 2-heaps of vertices on the s-v shortest path ordered by
the value & of the root of the heap made in step 2-(a).

(c) For each vertex v that is not on the s-t shortest path, construct heap Hgf) (v), that 1s,
2-heap of vertices on the s-v shortest path but mot on the s-t shortest path, ordered
by the value & of the root of the heap made in step 2-(a).

(d) For each vertex v on the s-t shortest path, construct H¥) (v) (0 < i), that is, a 2-heap
of vertices on the s-v shortest path ordered by the value 6 of the root of the heap made
in step 2-(a).

(e) For each i and v, merge H(();)t(v) and Hj(j)(v) to make Hg)(v). Then let the length of
the edge from node ny to node ny in these heaps be 6(ny) — 6(nq).

3. For each v on the s-t shortest path, make a node N,,.

4. For each v in G, make an edge from each node in Hg)(v) which represents a sidetrack
(u',u) to the root of Hg)(u') if v’ is not on the s-t shortest path, and define the length of
this new edge as the value of the root. If u' is on the s-t shortest path, make an edge to
the root of Hg+1)(u') ifi+1<c orto Ny ifi+1=c.

5. Make a new node for each v on the s-t shortest path, and make an edge from this node
to the root of Hg))(v). Let the length of this edge be 6 of the root. Let this new graph be
P(G).

This algorithm requires O(c(n + m)) time to construct the heap structure. In contrast, the
branch-and-bound technique we mentioned at first in this section can deal with this kind of

problem easily: we only have to remember how many branches from the s-t shortest path the
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parent path has, in searching suboptimal paths in the Eppstein heap structure. Thus, when ¢
is large, which technique is more efficient may depends on cases. But, note that the problem

whose c is large is not so important as that whose ¢ is small, i.e. 1 or 2.

3.6 Extracting Knowledge from Eppstein Heap

As mentioned by Eppstein (Eppstein 1994), the Eppstein heap has a good feature: some of
numerical values for each suboptimal solution can be obtained in O(1) time with some simple
pre-process of O(|Eal|) time. In the case of multiple alignment problem, these can be obtained in
such an efficient way for example: the number of aligned groups in which all residues are same,
the number of gaps, the score computed with another score table, the length of the alignment,
and so on. Our algorithm in the section 3.5 which enumerates only alignments in the class Dy
have the same feature too.

Let us consider the case of computing the number of gaps in each obtained suboptimal
solution. Let the number of gaps p we want to know be gaps(p). Then the algorithm will be
like this:

Algorithm 10

1. For each vertex v in'V, compute the number of gaps contained in the part of the s-v shortest
path. This can be done in O(n) time, by the depth first search on the shortest path tree to
t. Then let this value be g(v).

2. For each sidetrack (u,v), compute following
8 (u,v):
§'(u,v) = g(u) — g(v) (7)

3. When we search in the path heap and obtained a path p (which represents some alignment),

we compute the gaps(p) as follows from the value of gaps(parent(p)).
gaps(p) = gaps(parent(p)) + &' (sidetrack(p)) (8)

In the same way, we can get many kinds of values for each solution. But note that there is
some values that cannot be obtained in O(1) time. For example, affine gap cost is one of them,

though it is very important value.

3.7 Experimental Results

In this section, we examine the efficiency of our approach and investigate the properties of
suboptimal alignments through experiments. In the experiment, we used the PAM-250 matrix,
and linear gap penalty bx where x is the gap length and b is the minimum value in the PAM-
250 matrix, —8. All the experiments are done on Sun Ultra 1 workstation with 128 megabyte

memory.
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3.7.1 Case with High Similarity

We first did experiments on a group of 8 sequences with high similarity in Table 2. According
to it, the average scores per amino pair of these pairwise alignments are about 2.5 to 4. Add to

this, the optimal score of multiple alignment of all these 8 sequences is 33129 and its length is

456, thus the average score per amino pair of this alignment is 43;36%23 ~ 2.59 (Table 3). These
2

are higher than in the experiment in the next section 3.7.2. Figure 7 shows one of the optimal
alignments of all the 8 sequences in Table 2. You can easily recognize the high similarity.

As for computing alignments of less than 8 sequences, we could apply the simple A* al-
gorithm. However, for alignment of the 8 sequences, we used the upper bounding technique
(enhanced A*) because 128 megabyte memory is not enough for computing with the simple A*
algorithm: we used in the experiment the optimal solution as the upper bound to see the best
efficiency of this enhanced algorithm. In any case, we used the upper bounding technique after
the optimal solution is obtained.

According to Table 3, the DP takes a lot of time compared with the A* algorithm when d is
small, but it is negligible when d is large. This table also shows that, the additional searching
time required for computing suboptimal solutions is not so much as long as A is not much larger
than in these experiments: it requires at most twice the time in total as in the case of computing
only the optimal alignment in these experiments if A < 40.

Figure 8, Table 4 and Table 5 show the results of enumerating the suboptimal alignments.
Figure 8(a) shows that there are enormous number of suboptimal alignments, and the number
increases exponentially as A increases. However, in Figure 8(b), we can see the number of
suboptimal solutions is dramatically reduced by ignoring alignments in class D; (7 > 2). The
number of the alignments enumerated in this way is only 0.0003% (d = 4) to 0.4% (d = 8) of
all the alignments in case A = 30 (see Table 5): it seems difficult to check significance of all
the suboptimal alignments at most 10 worse than the optimal, but in our method, we can do it.
Accordingly, the enumeration time is also reduced drastically(see Table 5).

Figure 9 shows an example of suboptimal alignments. The score of it is 33139, which is only
10 worse than the optimal. In this figure, * in the first line indicates the regions different from the
optimal alignment in Figure 7. This alignment has 5 such regions, which means this alignment is
in the class D5. The existence of such alignments makes enumeration of suboptimal alignments
more difficult. It is the reason that our enumeration approach which avoids enumerating such
alignments is very efficient.

Observing Figure 8(a), the number of the suboptimal alignments seems to be similar and
irrelevant to d. It is an interesting fact, but this comparison is unfair. The number must be

compared between the cases which have same value of 5-: we must consider A per amino pair.

2
For example, it is all right to compare the case A = 28 (d = 8) and the case A =10 (d = 5).

7168718
16112

In this case, the number of suboptimal alignments in the former case is ~ 444.9 times as
that of the latter case.

According to Table 4, |Ea| and the size of Eppstein heap for this size of A is not so large.
Thus, the enumeration time in Table 5(b) is small, though it includes times for constructing the
heap. In Figure 8(b), the number of suboptimal alignments in class D; increases much when

d = 2,7,8 compared with other cases. The reason of this is seen in Table 4. The |EA| in cases
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d = 2,7,8 is larger than the others: there may be many alignments which have a large region
different from the optimal. On the other hand, in Figure 8(a), the number of the alignments
in case d = 4 is large compared with others, but much of these must be combinations of small

number of ‘necessary’ alignments.

3.7.2 Case with Low Similarity

We next did experiments on 5 globin sequences as in Table 6. According to Table 6, the average
scores per amino acid pair of pairwise alignments of them are about 0.2 to 1.3. The score of the

optimal multiple alignment of these 5 sequences is 543 and its length is 165, thus the average
543

165-(3)

Figure 10 shows the optimal alignment of the sequences in Table 6. It shows the dissimilarity

score per amid acid pair of this alignment is ~ 0.33, which is lower than the previous case.

compared with the case of the previous experiments.

Figure 11 and Table 7 show the result of the experiments. According to Table 7, the searching
time by simple A* algorithm is far longer than in the previous experiments for same d, though
the length is short. It is because the estimator of the A* algorithm is not so powerful in case
with low similarity.

According to Figure 11, the number of alignments in this experiment is also drastically
reduced as in the experiments in the section 3.7.1 by ignoring alignments in class D; (i > 2):
the number of alignments in Dy is only 0.004% of that of all the suboptimal alignments in case
d =5 and A = 20.

As mentioned by Zuker (Zuker 1991), the alignments with low score are not always insignif-
icant. In general, if the lengths of sequences to be aligned are short, the size of Ea will be
small. However, the size of EA is larger than in the previous experiments for same d and A.
Hence we can conclude that sequences we use in this experiment is not so significant as in the
previous experiment. In this way, we can use the size of Ea as a factor of the significance of the

alignment.
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4 Parametric Analysis of Multiple Sequence Alignment

In this section, we describe the techniques for parametric analysis of multiple sequence alignment

problem. Furthermore, we also do experiments on actual protein sequences.

4.1 Basic Techniques

In this section, we describe basic methods to check how the optimal solution varies as the
parameters such as gap penalties change. The easiest approach for this kind of problem is
to change the parameter little by little and check the optimal solution, but we cannot know
how little we should change the parameter. Recently the techniques for parametric analysis
are developed (Gusfield et al. 1992, Huang et al. 1994, Vingron et al. 1994, Waterman 1994,
Waterman 1995, waterman et al. 1992, Zimmer 1997). In those previous works, they also did
parametric analysis which deal with more than one parameters, but algorithms for them are not
so efficient as the one-parameter case and it will often be nonsense if the parameters are not
related each other. Thus we deal with only one parameter at one time in this thesis.

We consider the case in which the score of some alignment A; is expressed with parameter

p as follows:
si(p) = a(A;) + b(A;) - p (9)

Gap penalty satisfies this expression for example.

From here, we explain how to divide 1-parameter (1-dimensional) space to regions in which
the optimal alignments are always same. Let a; be a(A;) and b; be b(A;). Let p; and p; be
the values of the parameter which satisfies p; < p; and has different optimal solutions. Let the
alignment A; be the alignment with smallest value of b among the optimal alignments at p = p;

and A; be the alignment with largest value of b among the optimal alignments at p = p;. Then

this two alignments A; and A; has the same score at p = p;; = —ZZ: : Z] If the optimal score
at p = p;; equals to s;(pij) = sj(pi;), there are only two regions betzweerf pi and pj. Otherwise,
we can apply the same technique recursively (i.e. apply between p; and p;; and between p;; and
p;) to obtain such division. Figure 12 shows an example of this procedure.

Letting n be the number of regions which we want to obtain, we only have to compute the
optimal solutions 2n — 1 times. Thus we can efficiently do parametric analysis in the case of one
parameter.

In the algorithm, the alignments with the largest or smallest value of b among the optimal
alignments at some fixed parameter are required. These can be easily obtained by some lexico-
graphical extension of DP (Vingron et al. 1994, Waterman 1994, Waterman 1995, Waterman et
al. 1992). This technique can be applied also to the (enhanced) A* algorithm, but the aim of
the parametric analysis is to examine all the optimal solutions. Accordingly, it is not preferable
to ignore most optimal solutions if there are many. Thus, for this purpose, we enumerate the
optimal solutions by the Eppstein algorithm in the section 3.1 and pick up the solutions with

the largest or smallest value of b.
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4.2 Upper Bounding Technique for Parametric Alignment

As we stated in the section 2.2, the A* algorithm will be more efficient if some upper bounding
value for the optimal solution is given (it is called the enhanced A* algorithm). In the parametric
alignment problem, s;(p;;j) = s;(pi;) in the section 4.1 is a lower bound of the score of the optimal
alignment at p = p;;. Thus it can be used as this upper bounding value in computing the optimal
alignments at p = p;; with A* algorithm. Note that the enhanced A* algorithm will show best
performance if the s;(p;j) = s;(p;;) is the optimal score at p = p;;, which always happens at the

final stage of the parametric analysis.

4.3 Experimental Results

In this section, we do parametric analysis on groups of actual protein sequences. We use the
famous PAM-250 matrix for score matrix in the experiments in sections 4.3.1 and 4.3.3. Here,
all the experiments are also done on Sun Ultra 1 workstation with 128 megabyte memory in
sections 4.3.1 and 4.3.3 and on Sun Ultra 1 workstation with 256 megabyte memory in section
4.3.2.

4.3.1 Parametric Gap Penalty

Previous works on parametric analysis mainly dealt with gap penalty, because it is a very
important factor of the alignment problem (Gusfield et al. 1992, Huang et al. 1994, Vingron
et al. 1994, Waterman 1994, Waterman et al. 1992). But these works dealt only with the
2-alignment problem.

We did parametric analysis of gap penalty using the top d sequences (d < 7) in Table 2. In
general, the most popular gap penalty is the minimum value in the score matrix, which is —8
in this PAM-250 case. We did parametric analysis for d-sequence alignment (2 < d < 6) with
gap penalty between —2 and —16.

Table 8 shows the result of the experiment. In Table 8, the first row of each entry of d shows
the boundaries of the regions, but several of the ends are not the boundaries: the ends with
— in #Max and #Min entry are not boundaries. The second row shows the numbers of the
optimal solutions at the value. The last two rows show the numbers of optimal solutions with
largest /smallest value of b in the section 4.1. Thus, these values equal to the number of the
optimal solutions between the boundaries.

According to the table, it is observed that the intervals of the regions become smaller (i.e. the
optimal solution is not stable), as the penalty increases regardless of d. It also shows that there
are not so much difference between different d’s, which means we can do parametric analysis
as easily as in the 2-alignment case. The table also shows that there are more than 1 optimal
solution in all cases in the experiments.

Figure 13 shows the number of visited nodes by A* algorithm in computing the all the
optimal alignments under various gap penalties. According to this figure, the number of the
visited nodes increases drastically as the gap penalty increases especially when gap penalty is
larger than —4. This is the reason why we analyzed gap penalty only up to —2.5 or —3.5 when

d > 5: the required space was too large to compute when the gap penalty is around —2.
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We think this increase of the search space is caused by the instability of the optimal solution,
based on many various experiments. It will be more clear in the next section 4.3.2. In general,
it is known that the number of required space for A* algorithm is large if the similarity among
the group is low, probably for same origin.

We also did experiments on 10 TNF-« sequences in Table 9, which are very similar to each
other. Table 11 shows the result of it. In the experiments, we examined between gap penalties
—16 and —2.5, for d = 2,4,6,8,10 sequences. It is between —16 and —4.5 in case of d = 10,
because of computational difficulty of obtaining the optimal solution with gap penalties near to
0. There are fewer regions than the EF-1a case. The reason of this may be the high similarity

among this group.

4.3.2 Parametric Score Matrix

In this section, we deal with the parametric analysis of score matrix. Score matrix is very
important parameter and it deeply affects the quality of the output alignment. Thus parametric
analysis of it is not only very important but also requires much care to deal with.

There ape (2 T2 —1)

parameters, where n is the number of characters, to change in the
score matrix, thus what we can do is very limited simple analysis. Some of the previous works
dealt with this topic. For example, Vingron et al. (Vingron et al. 1994) analyzed the varying
solutions as they added some constant (which is the parameter to change) to each element in
the score matrix. But it is not so interesting because those constants does not have any meaning
at all. We should analyze in more practical and interesting way.

We implemented a program to analyze how the optimal solutions will change as the score
matrix changes linearly between two score matrices (sijl-)) and (57(;]2-)): we used (p-sgjl-)—l—(l —p) 5532))
as the score matrix and considered p as the parameter to be changed. Note that our program
can of course deal with the analysis what Vingron et al. did (Vingron et al. 1994).

At first, we did experiments on 8 sequences (fragments) of rhodopsin superfamily shown in
table 12. Figure 14 shows the optimal alignment of 5 sequences taken from table 12. But, in the
biologists’ view, it is not the best alignment (Blanck et al. 1987, Hargrave 1991). According to
them, the K’s (lycine) which are marked with * at the first line in figure 14 must be aligned.

There must be various methods to cope with this kind of problems, but one of the simplest
method is to check the optimal alignment obtained with a score table whose score for K-K
is large. But, too large score for K-K makes irrelevant K’s aligned and the alignment will be
unnatural. Thus, we should choose as small score as possible in the constraint that we can
obtain a biologically good solution. In this way, we can align reasonably those K’s.

In this point of view, we did parametric analysis on these sequences, letting the score for
K-K be the parameter to change. In the experiment, we let the scores other than it are same as
those in the PAM-250 score matrix in Table 1. In the PAM-250 score matrix, the score for K-K
is 5, hence we only examined in the region where its score is larger than 5.

Table 14 shows the result of this experiment. The first row of each entry shows the score
for K-K which is boundary of regions except for several ends with - in #Max and #Min entries.
The second row shows the number of the optimal solutions and the other two rows shows the

number of the optimal solutions with largest /smallest b in the section 4.1. In the table, * denotes
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the smallest score for K-K which induces the optimal alignment whose K’s are aligned desirably.
Figure 15 shows the alignment of 5 sequences obtained with smallest score for K-K such that K’s
are aligned desirably. This alignment is biologically much better than that obtained with the
ordinary PAM-250 score matrix.

Figure 16 shows how the number of visited nodes by the A* algorithm change as the score
for K-K changes. This figure shows the case of 4 and 5 sequences. In this figure, we can easily
see that the number is large where the boundary in the parametric analysis exists. Thus, as we
mentioned in the section 4.3.1, we conclude that computing the optimal solution will be more
difficult if the solution is instable.

It is also interesting that in the case of the alignment of 4 rhodopsin sequences, the number
of visited nodes is fixed when the score for K-K is larger than 84. It is because the all possible
K’s are aligned and thus letting the score larger makes no difference.

PAM-t score table is computed based on the evolutionary permutation probability of amid
acids per period proportional to ¢t (Dayhoff et al. 1978), and we can consider various PAM score
tables such as PAM-120, PAM-250 and so on. Altschul (Altsuchul 1991) suggested that it is
better to align sequences with two or three different PAM scores based on statistical analysis.
Thus parametric analysis on this ¢ is useful. Because PAM-t converges into some matrix as ¢
becomes larger, parametric analysis on t can be approximated by the linear parametric analysis
between PAM matrices if ¢ is large enough. But note that, because of the same reason, the
optimal solutions obtained with different large ¢’s are often same. Note that the exact parametric
analysis on this ¢ is difficult and remains as one of future works.

Table 15 shows the result of this kind of experiment using 6 TNF-« sequences in Table 9.
The first row of each entry shows the value p of (p - SZ(;) +(1—p)- sg;)) which is boundary of
regions except for several ends with - in #Max and #Min entries, where (5(1)) is PAM-250 score
matrix and (s(?)) is PAM-320 matrix. The second row shows the number of the optimal solutions
and the other two rows shows the number of the optimal solutions with largest/smallest b in
the section 4.1. Notice that there are no other optimal solutions other than those at both ends
between the PAM-250 score matrix and the PAM-320 score matrix.

4.3.3 Parametric Weight Matrix

In this section, we deal with weighted version of the multiple alignment problem as we mentioned
in the section 2.1. Computing the optimal solution of this problem by the (enhanced) A*
algorithm is rather easy: all we have to do is using h(v) = 3) <, j<qwij - L*(uij,vij) as the
estimator. Thus we can use same techniques as in previous experiments.

A weight matrix for aligning sequences whose phylogenetic tree is known can be made if di-
vergence between sequences are given (Altsuchul 1989). But what should we do if the divergence
are ambiguous? In such case, parametric analysis between reasonable two weight matrices helps.
Thus, parametric analysis of weight matrix may helps tuning parameters of a phylogenetic tree.

(d—2)(d+1)

There are parameters to change in the weight matrix, thus what we can do is
very limited simple analysis. We implemented a program to analyze how the optimal solutions
change as weight matrix changes linearly between two weight matrices, like in the case of the

section 4.3.2.
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(16,71)):

j

wm:{“ = (10)

We did experiments between following two weight matrices of (w;;) and (w

1 i F ]
wlpm = P = ory=n (11)
Wy otherwise

(pn) -
i An-

creases the importance of nth sequence to p times as the simple sum-of-pairs multiple alignment.

In this equation, (w;;) corresponds to the simple sum-of-pairs multiple alignment, and w

If biologically good alignment is discovered in the experiment, we can estimate the importance
of the sequence which was increased.
Table 16 shows experiment results using the top 6 EF-1a sequences in Table 2. The first

column is the name of the sequence whose importance was increased. The first row of each
(p,n)
]

- in #Max and #Min entries. The second row shows the number of the optimal solutions and

entry shows the value of p of w which is boundary of regions except for several ends with
the other two rows shows the number of the optimal solutions with largest/smallest b in the
section 4.1.

In this experiment, we notice that the optimal solutions will change even when only p = 1.33
in some of the cases (cases of Tha and Ent). It means we should take more care of the weight
matrix. This experiment also show that there are more than 1 optimal solution in all the cases
in this experiment. In the experiment, the number of the regions are not too large to deal with
(6 to 10 in this experiment). This means this approach is very reasonable to take.

We also did experiments on 5 EF-2 sequences in Table 17, which are very similar to e(ach )other
16m ). In

and very long. The experiments are done also between weight matrices of (w;;) and (wi]

the experiments, we increased importance of one of the sequences. Table 18 shows the results.
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5 Conclusions

In multiple alignment problem, it is often said that the optimal solution obtained with only the
scoring criteria is not always the biologically best one. Thus, in this thesis, we took two flexible
approaches to flexible multiple alignment problem to overcome this problem. One approach is
by suboptimal analysis and the other is by parametric analysis.

We first investigated method for enumerating suboptimal alignments of multiple sequences.
Previous works related to this subject could not deal with enumeration in practice because of
the enormous amount of the suboptimal alignment.

At first, we introduced the Eppstein algorithm (Eppstein 1994). We then proposed efficient
upper bounding technique to obtain Fa efficiently for multiple alignment problem using A*
algorithm. Using this technique, we extended Eppstein algorithm to reduce the memory space.

Furthermore, we classified the suboptimal alignments into classes D; based on the number
of the different regions from the optimal solution. We showed that the suboptimal alignments
in classes D; (i > 2) can be easily constructed from the alignments in the class Dy (the optimal
solution) and the class Dy, and suggested that the alignments in the classes D; (i > 2) is not
necessary to enumerate. In this point of view, we proposed an algorithm to enumerate only the
suboptimal alignments in the class D;. We also discussed how to obtain information from the
Eppstein’s heap structure. We showed that some of the important values of the alignments can
be obtained in constant time after some preprocess.

Based on these algorithms and observations, we did experiments on actual protein sequences
to see the efficiency of our algorithms and to examine the property of the sequences. We did
experiments on both groups with high similarity and with low similarity and we saw our method
was very dramatical.

Next, we investigated parametric optimization of the multiple alignment problem. The
previous works studied this topic only on 2-alignment case, but multiple alignment case is also
very important.

We first described the basic technique of parametric analysis, which is a technique to divide
the parameter space into regions where the optimal solution is always same. Then we discussed
how to use upper bounding technique of the enhanced A* algorithm in this parametric analysis.

In multiple alignment problem, there are three kind of parameters, 7.e. gap penalty, score
matrix, and weight matrix. We did parametric experiments on each of them, and examined
the property of the multiple alignment problem in the view of parametric optimization. In
the experiments, we showed that the parametric analysis of multiple alignment problem is as
practical as that of 2-alignment.

As for future works, there are several problems to do. At first, we should develop more flexible
method, such as parametric analysis of suboptimal solutions. Using affine gap cost which makes
the problem much difficult also remains as one of future works. Algorithms we proposed are not
only for the alignment problem and can also be applied to many other optimization problems,

which we should do as a future work too.

22



Acknowledgement

This work was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas,

“Genome Science” from the Ministry of Education, Science, Sports and Culture of Japan.

23



References

Altsuchul S. F. 1991. Amid Acid Substitution Matrices from an Information Theoretic
Perspective, J. Mol. Biol., 219, 555-565.

Altsuchul S. F., Carroll R. J., and Lipman D. J. 1989. Weights for Data Related by a Tree, J.
Mol. Biol., 207, 647-653.

Altschul S. F. and Erickson B. W. 1986. Optimal Sequence Alignment Using Affine Gap Costs,
Bull. Math. Biol., 48, 603-616.

Araki S., Goshima M., Mori S., Nakashima H., Tomita S., Akiyama Y., and Kanehisa M. 1993.
Application of Parallelized DP and A* Algorithm to Multiple Sequence Alignment, Proc.
Genome Informatics Workshop IV, 94-102.

Blanck A. and Oesterhelt D. 1987. The Halo-opsin Gene. II. Sequence, Primary Structure of
Halorhodopsin and Comparison with Bacteriorhodopsin, EMBO J., 6, 265-273.

Chao K. M. 1994. Computing All Suboptimal Alignments in Linear Space, Proc. 5th
Symposium on Combinatorial Pattern Matching, 31-42. LNCS 807, Springer-Verlag, New York.

Dayhoff M. O., Schwartz R. M., and Orcutt B. C. 1978. Atlas of Protein Sequence and
Structure (M. O. Dayhoff ed.), 5, suppl. 3, 345-352, National Biomedical Research Foundation,
Washington D. C.

Eppstein D. 1994. Finding the k Shortest Paths, Proc. 25th IEEE Annual Symposium on
Foundation of Computer Science, 154-165.

Frederickson G. N. 1993. An Optimal Algorithm for Selection in a Min-Heap, Information and
Computation, 104, 197-214.

Gotoh O. 1982. An Improved Algorithm for Matching Biological Sequences, J. Mol. Biol. 162,
705-708.

Gotoh O. 1995. A Weighting System and Algorithm for Aligning Many Phylogenetically
Related Sequences, Comput. Applic. Brosci., 11, 543-551.

Gotoh O. 1993. Optimal Alignment between Groups of Sequences and its Application to
Multiple Sequence Alignment, Comput. Applic. Biosci., 9, 361-370.

Gotoh O. 1995. Parity, 10, No. 12, 13-19, in Japanese.

24



Gracy J., Chiche L. and Sallantin J. 1993. Improved alignment of weakly homologous protein

sequences using structural information, Protein Engineering 6, 821-829.

Gupta S. K., Kececioglu J. D., and Schaffer A. A. 1995. Improving the Practical Space and
Time Efficiency of the Shortest-paths Approach to Sum-of-pairs Multiple Sequence Alignment,
J. Comput. Biol., 2, No. 3, 459-472.

Gusfield D., Bakasubramanian K., and Naor D. 1992. Parametric Optimization of Sequence
Alignment, Proc. 3rd ACM-SIAM Annual Symposium on Discrete Algorithms, 432-439.

Hargrave P. A. 1991. Current Opinion on Structural Biology, 1, 575-581.

Hsu M. 1994. A Study on the Shortest-Path Algorithm for Route Navigation, A Master’s

Thesis, Department of Information Science, University of Tokyo.

Huang X., Pevzner P. A., and Miller W. 1994. Parametric Recomputing in Alignment Graphs,
Proc. 5th Annual Symposium on Combinatorial Pattern Matching, 87-101, LNCS 807,
Springer-Verlag, New York.

T. Ikeda, 1995. Applications of the A* Algorithm to Better Routes Finding and Multiple
Sequence Alignment, A Master’s Thesis, Department of Information Science, University of
Tokyo.

Ikeda T., Hsu M., Imai H., Nishimura S., Shimoura H., Hashimoto T., Temmoku K., and
Mitoh K. 1994. A Fast Algorithm for Finding Better Routes by AI Search Techniques, Proc.
IEEE International Confrence on Vehicle Navigation and Information System, 90-99.

Tkeda T. and Imai H. 1994. Fast A* Algorithms for Multiple Sequence Alignment, Proc.
Genome Informatics Workshop V, 90-99.

Imai H. and Tkeda T., 1995. k-group Multiple Alignment Based on A* Search, Proc. Genome
Informatics Workshop VI, 9-18.

Naor D. and Brutlag D., 1993. On suboptimal alignments of biological sequences, Proc. 4th
Symposium on Combinatorial Pattern Matching, 179-196. LNCS 684, Springer-Verlag, New
York.

Saqi M. A. and Sternberg M. J. 1991. A simple method to generate non-trivial alternate
alignments of protein sequences, J. Mol. Biol., 219, 727-732.

Saqi M. A., Bates P. A., and Sternberg M. J. E. 1992. Towards an automatic method of

predicting protein structure by homology: an evaluation of suboptimal sequence alignments,
Protein Engineering, 5, 305-311.

25



Shibayama G. and Imai H. 1993. Finding K-best Alignment of Multiple Sequences, Proc.
Genome Informatics Workshop IV, 120-129.

Shibuya T., Ikeda T., Imai H., Nishimura S., Shimoura H., and Tenmoku K. 1995. Finding a
Realistic Detour by Al Search Techniques, Proc. 2nd Intelligent Tranportation Systems, 4,
2037-2044.

Shibuya T. and Imai H. 1997. Enumerating Suboptimal Alignments of Multiple Biological
Sequences Efficiently, Proc. Pacific Symposium on Biocomputing, 409-420.

Shibuya T. and Imai H. 1997. New Flexible Approaches for Multiple Sequence Alignment,
Proc. 1st Annual International Conference on Computational Molecular Biology, 267-276.

Shibuya T. and Imai H. 1996. Parametric Alignment of Multiple Biological Sequences, Proc.
Genome Informatics Workshop 1996, 41-50.

Shibuya T., Imai H., Nishimura S., Shimoura H., and Tenmoku K. 1996. Detour Queries in
Geographical Databases for Navigation and Related Algorithm Animations, Proc.

International Symposium on Cooperative Database Systems for Advanced Applications.

Shirai Y. and Tsuji J. 1982. Artificial Intelligence, Iwanami Course: Information Science, 22,

Iwanami, Tokyo, in Japanese.

Spouge J. L. 1989. Speeding Up Dynamic Programming Algorithms for Finding Optimal
Lattice Paths, STAM J. Appl. Math., 49, 1552-1566.

Vingron M. and Waterman M. S. 1994. Sequence Alignment and Penalty Choices: Review of
Concepts, Case Studies and Implications, J. Mol. Biol., 235, 1-12.

Waterman M. S. 1995. Introduction to Computational Biology: Maps, Sequences and
Genomes, Chapman & Hall.

Waterman M. S. 1994. Parametric and Ensemble Sequence Alignment Algorithms, Bull. Math.
Biol., 56, 743-767.

Waterman M. S. and Eggert M. 1987. A New Algorithm for Best Subsequence Alignments
with Application to tRNA-rRNA Comparisons, J. Mol. Biol., 197, 723-728.

Waterman M. S., Eggert M., and Lander E. 1992. Parametric Sequence Comparisons, Proc.
Natural Academy of Science, USA, 89, 6090-6093.

26



Zimmer R. and Lengauer T. 1997. Fast and Numerically Stable Parametric Alignment of
Biosequences, Proc. 1st Annual International Conference on Computational Molecular Biology,
344-353.

Zuker M. 1991. Suboptimal sequence alignment in molecular biology. Alignment with error
analysis, J. Mol. Biol., 221, 403-420.

27



28



Table 1: PAM-250 score matrix

c| 12

S 0 2

T| -2 1 3

P/ -3 1 0 6

Al -2 1 1 1 2

G|l-3 1 0-1 1 5

N -4 1 0-1 0 0 2

b/ -5 0 0-1 0 1 2 4

El-5 0 0-1 0 O 1 3

Q| -5-1-1 0 0-1 1 2 4

H| -3-1-1 0-1-2 2 1 1 3 6

R| -4 0-1 0-2-3 0-1-1 1 2 6

K| -5 0 0-1-1-2 1 0 0 1 0 3 5

M -5$-2-1-2-1-3-2-3-2-1-2 0 0 6

1,-2-1 0-2-1-3-2-2-2-2-2-2-2 2 5

L,-6 -3-2-3-2-4-3-4-3-2-2-3-3 4 2 6

vi-2-1 0-1 0-1-2-2-2-2-2-2-2 2 4 2 4

F|l-4-3-3-5-4-5-4-6-5-5-2-4-5 01 2-1 9

Y 0-3-3-5-3-5-2-4-4-4 0-4-4-2-1-1-2 710

w -8-2-5-6-6-7-4-7-7-5-3 2-3-4-5-2-6 0 017
c s T p A G N D E Q H R K M I L V F Y W

Table 2: Sequences of EF-TU and EF-1a to be aligned and their scores of pairwise sequence

alignments. We use the top d sequences in this table in the experiments.

Sequences Pairwise Scores
Species Protein | Length || Met Tha Thc Sul Ent Pla Sty
Halobacterium marismortui (Hal)| EF-TU 421 1329 1314 1221 1109 1099 1000 971
Methanococcus vannielii (Met) EF-TU 428 1336 1247 1150 1176 1087 1045
Thermoplasma acidophilum(Tha) EF-la 424 1311 1261 1233 1063 1072
Thermococcus celer (The) EF-la 428 1132 1130 1049 991
Sulfolobus acidocaldarius (Sul)| EF-la 435 1192 1131 1099
Entamoeba histolytica (Ent)| EF-la 430 1584 1551
Plasmodium falciparum (Pla)| EF-la 443 1636
Stylonychia lemnae (Sty)| EF-la 446
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Table 3: Searching time (sec) by the A* algorithm in the experiment on the d sequences of
EF-TU and EF-1a. In case d = 8, the enhanced A* utilizing the optimal score is used. Note
that only DP is used in case d = 2.

\ Hd:z d=3 d=4 d=5 d=6 d=7 d=

best score 1329 3970 7709 12314 18101 24912 33129
Pre-process DP 0.32 1.00  4.30 7.23 11.1 16.0 20.5
Search (optimal) - 018 052 335 196 426 5427
Search (A =10) - 0.18 0.60 3.63 20.9 439 5686
Search (A = 20) - 0.22 0.73 4.17 23.1 462 6735
Search (A = 30) - 0.27 0.93 5.00 26.9 498 8027
Search (A = 40) - 033 1.23 6.22 31.5 552 9623

Table 4: Size of Fa and Eppstein’s heap structure in the experiments on d sequences of EF-TU
and EF-1a. The heap size in the table does not include the number of nodes made in step 4 of

Eppstein algorithm, which is same as |Fa|.

A |d=2 d=3 d=4 d=5 d=6 d=7 d=
0| 1Bl 503 485 513 553 534 579 540
heap size | 437 277 411 503 454 674 404
50 | 1Bl 1101 595 609 689 691 799 784
heap size | 7184 1010 1266 1701 1750 2604 2672
5 | 1Bl 1447 946 817 901 864 1246 1316
heap size | 12983 4949 3417 3997 3594 7552 8539
o | 1Bl 2011 2528 1170 1249 1156 1973 2254
heap size | 17934 25861 8648 10036 7785 18407 23973

Table 5: Enumerating time (sec) when A = 30 in the experiment on the d sequences EF-TU
and EF-1a. (a) is the case enumerating all the suboptimal alignments, and (b) is the case
enumerating alignments in class Dy (optimal) and D;. The time of constructing the Eppstein’s

heap structure is included in the time below.

| | d=2 d=3 d=4 d=5 d=6 d=7 d=38]

#alignments || 38047513 8804702 327522816 85923864 20689104 49633652 13857237

(&) time (sec) 152.87 54.98 1830.18 510.63 124.55 292.50 109.00
(b) #alignments 6968 1695 1117 2176 1659 41791 60589
time (sec) 0.23  0.13 0.32 0.95 2.10 9.83  29.62
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Table 6: Globin sequences to be aligned and their scores of pairwise sequence alignments.

globin Length || Apl Bus Ct7 Ct3

Lumbricus terrestris - AIII (Lum) 157 29 15 35 41

Aplysia limacina (Apl) 146 126 177 140

Busycon canaliculatum (Bus) 147 111 64

Chironomus thummi thummi - VITA  (Ct7) 145 191
Chironomus thummi thummi - IITa  (Ct3) 151

Table 7: The best score, searching time (sec) by simple A* algorithm and the size of FA in the

experiment on the d globin sequences.

\ Hd:2 d=3 d=4 d=5

best score 29 103 354 543
Pre-Process DP 0.05 0.27 0.52 0.83
Search (optimal) - 0.73 7.40 837
Search (A=10) | - 085 813 865
Search (A=20) | - 093 943 909
Search (A =30) | - 122 1122 964
Search (A = 40) - 1.63 14.13 1080

|Ero 357 508 380 554
| oo 776 1184 866 1159
| E3o 1149 2403 1575 2448
| Es0l 1544 3839 2669 4569
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Table 8: The result of the experiment on parametric gap penalty using EF-1a sequences.

Gap penalty || —16 -5 -3 —-2.5 —2
Jd =9 | #Solutions 4 12 24 192 576
#Max - 8 16 ) 32
#Min - 1 ) 16 )
Gap penalty || —16 —3.5 -3 —2.75 =25 —2.2 —2
d=3 #Solutions 8 16 24 32 72 48 256
#Max - 8 16 16 16 32 96
#Min - 8 8 16 16 16 32
Gap penalty || —16 -8 —-3.83 3.5 —2.5 =233 -=2.25 -2
d=4 #Solutions 16 32 32 32 32 48 160 4608
#Max - 16 16 16 16 32 128 384
#Min - 16 16 16 16 16 32 128
Gap penalty || —16 —T7.5 —4 —3.38 —=3.17 -3 —2.88 —2.75 -—-2.5
d=5 #Solutions 2 4 4 4 4 4 12 8 24
#Max - 2 2 2 2 2 4 4 4
#Min - 2 2 2 2 2 2 4 4
Gap penalty || —16 —6.5 —4.5 —4 -3.5
d—=¢ | FSolutions 4 16 8 8 4
#Max - 4 4 4 -
#Min - 1 1 1 -

Table 9: TNF-« sequences used in the experiment

Species Protein Length
Homo sapiens (HSp) tumor necrosis factor a (TNF-«) precursor 233
Mus musculus (MM) tumor necrosis factor o (TNF-«) precursor 235
Sus scrofa (SS) tumor necrosis factor o (TNF-«) precursor 232
Ovis orientalis aries (OOAp) | tumor necrosis factor a (TNF-«) precursor 234
Bos primigenius taurus (BPT) | tumor necrosis factor a (TNF-«) inhibitor 233
Equus caballus (EC) tumor necrosis factor o (TNF-«) precursor 234
Oryctolagus cuniculus (OC) | tumor necrosis factor @ (TNF-«) precursor 234
Rattus norvegicus (RN) tumor necrosis factor a (TNF-«) precursor 235
Homo sapiens (HSi) tumor necrosis factor a (TNF-«) inhibitor 233
Ovis orientalis aries (OOAi) | tumor necrosis factor @ (TNF-«) inhibitor 233
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Table 10: Scores of pairwise alignments of TNF-« sequences

MM SS OOAp BPT EC OC RN HSi OOAi
HSp 955 990 924 935 1013 949 943 1041 932
MM 919 872 872 945 952 1124 952 866
SS 980 990 982 906 912 974 988
OOAp 1059 916 840 856 915 1145
BPT 933 865 854 926 1067
EC 962 931 1013 906
ocC 946 961 845
RN 940 850
HSi 922

OO0Ai

Table 11: The result of the experiment on parametric gap penalty using TNF-a.

Gap penalty || -16 -2.5
d=2 #Solutions 6 18
# Max - 12
# Min - 6
Gap penalty || -16 -6.67 -3.75 -2.88 -2.67 -2.5
d=4 #Solutions 12 24 24 24 24 36
# Max - 12 12 12 12 24
# Min - 12 12 12 12 12
Gap penalty || -16 -4.95 -3.3 -2.75 -2.5
d=6 #Solutions 6 12 18 24 36
# Max - 6 12 12 24
# Min - 6 6 12 12
Gap penalty || -16 -5.57 -4.5 -3.36 -2.92 -2.75 -25
d=28 #Solutions 1 2 2 3 4 4 2
# Max - 1 1 2 2 2 -
# Min - 1 1 1 2 2 -
Gap penalty || -16 -5.28 -4.5
d =10 | #Solutions 1 2 1
# Max - 1 -
# Min - -
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Table 12: Sequences of Rhodopsin Superfamily used in the experiments

Species Protein Length

Halobacterium sp. (Hal) | Halorhodopsin precursor 39
Homo Sapiens (HSg) | Green-sensitive opsin 48
Homo Sapiens (HSr) | Red-sensitive opsin 48
Gallus gallus (GGd) | Rhodopsin 55
Homo Sapiens (HSb) | Blue-sensitive opsin 54
Homo Sapiens (HSd) | Rhodopsin 55
Drosophila melanogaster (DM3) | Opsin RH3 53
Drosophila melanogaster (DM4) | Opsin RH4 53

Table 13: Scores of pairwise sequences of Rhodopsin Superfamily

HSg HSr GGd HSb HSd DM3 DM4
Hal | -35 -32  -79 -61  -83 -31 -26
HSg 256 108 100 111 2 -10
HSr 107 100 110 7 -5
GGd 147 275 30 18
HSb 150 34 35
HSd 33 21
DM3 277
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Table 14: The result of the experiment on parametric score matrix using rhodopsin sequences.
* denotes the smallest score for K-K which induces the optimal alignment whose K’s are aligned

desirably.

Score of K-K || 5  53* 128

d =9 | #Solutions || 1 6 5
#Max - 1 -
#Min - 5 -
Score of K-K || 5 55.5 128
d=3 #Solutions || 2 7 5
#Max - 2 -
#Min - 5 -
Score of K-K || 5 38  585* 128
d=4 #Solutions || 4 36 48 12
#Max - 32 12 -
#Min - 4 32 -

Score of K-K || 5 24 89* 124 128
d =5 | #Solutions || 24 32 20 28 16

#Max - 8 12 16 -
#Min Y 8 12 -
Score of K-K || 5 20 109.5% 128
d=6 #Solutions || 24 28 6 2
#Max - 4 2 -
#Min - 24 4 -
Score of K-K || 5 16 33.33 64
d="7 #Solutions || 4 8 6 2
#Max - 4 2 -
#Min - 4 4 -
Score of K-K || 5 16.5 32
J — g | #Solutions || 8 16 8
#Max - 8 -
#Min - 8 -

Table 15: The result of the linear parametric analysis between PAM-250 and PAM-320 using 6

TNF-a sequences

P 0 05 1

d=6 #Solutions || 6 12 9
#Max - 6 3

#Min - 6 6
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Table 16

: The result of the experiment on parametric weight matrix using EF-1a sequences.

Weight 1 133 3 317 45 475 5 6.57 16
Ha] | #Solutions | 4 16 16 12 8 8 48 16 8
#Max - 4 8 4 4 4 8 8 -
#Min - 4 4 8 4 4 4 8 -
Weight 1 225 3 4.2 44 45 12 14.5 16
Met | #Solutions || 4 8 12 16 16 16 16 16 24
#Max - 4 8 8 8 8 8 8 16
#Min - 4 4 8 8 8 8 8 8
Weight 1 233 3 55 T7.67 8 16
Tha #Solutions || 4 8 8 8 8 16 4
#Max - 4 4 4 4 4 -
#Min - 4 4 4 4 4 -
Weight 1 1.8 3 4 5 5.33 6 10.33 12 14.44 16
The | #Solutions || 4 8 8 12 12 8 8 8 8 8 12
#Max - 4 4 2 4 4 4 4 4 4 8
#Min - 4 4 4 2 4 4 4 4 4 4
Weight 1 2 3 3.7 5 6 6.43 8 10.25 14 16
Gyl | #Solutions || 4 12 8 8 12 16 16 16 16 16 8
#Max - 4 4 4 8 8 8 8 8 8 -
#Min - 4 4 4 4 8 8 8 8 8 -
Weight 1 133 1.5 3 3.66 5 6 10.33 13 16
Ent | #Solutions || 4 8 8 8 8 8 8 12 24 16
#Max - 4 4 4 4 4 4 8 16 -
#Min - 4 4 4 4 4 4 4 8 -

Table 17: EF-2 (translation elongation factor eEF-2) sequences to be aligned and their pairwise

scores

Sequences Pairwise Scores
Species Protein | Length || CGS DM DD SC
Homo sapiens (HS) eEF-2 858 4216 3409 2463 2941
Cricetinae gen. sp. (CGS) eEF-2 858 3392 2456 2931
Drosophila melanogaster (DM) | eEF-2 844 2416 2959
Dictyostelium discoideum (DD) | eEF-2 830 2446
Saccharomyces cerevisiae (SC) | eEF-2 842

Table 18: The result of the experiment on parametric weight matrix using EF-2.

Weight 1 133 2 3 314 6 9 16
HS #Solutions || 16 32 32 16 16 16 24 24

#Max - 16 8 8 8 8 16 -

#Min - 16 16 8 8 8 8 -
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Figure 1: The graph for the alignment of two sequences ATGC and ACT. The s-t path in the bald
line represents the alignment of ATGC- and A--CT

Q The optimal alignment

P
/NN /N
N

Shortest path tree

Figure 2: The path heap of the alignment graph of two sequences KN and QK
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The optimal alignment

N
L AT

/ X

-

Figure 3: The compact path heap of the alignment graph of two sequences KN and QK. Some of

the nodes are shared, and the number of nodes in it is reduced.

N

Figure 4: Ea is a set of vertices which are used by the s-t paths whose lengths are at most A

longer than the shortest path



REA
ADF
KNG
LAA
GSG

FSQ

-VE

REAFSQAIWRATFAQVPESRSLFKR==
ADFLV-ALF-EKFPDSANFFADFKGKS
KNG-S-LLFGLLFKTYPDTKKHFKHFD
LAAVF-TAYPDIQARFPQFAGK-DVAS
GSGVE-ILY-FFLNKFPGNFPMFKKLG

(a) The optimal alignment

ATWRATFAQVPESRSLFKR==
ALF-EKFPDSANFFADFKGKS
LLFGLLFKTYPDTKKHFKHEFD
TAYPDIQARFPQFAGK-DVAS
ILY-FFLNKFPGNFPMFKKLG

(b) A suboptimal alignment

REAFSQAIWRATFAQVPESRS
ADFLV-ALF-EKFPDSANFFA
KNG-S-LLFGLLFKTYPDTKK
LAAVF-TAYPDIQARFPQFAG
GSGVE-ILY-FFLNKFPGNFP

LF
DF
HF
-K
MF

KR==
KGKS
KHFD
DVAS
KKLG

(¢) Another suboptimal alignment

REA | FSQ | AIWRATFAQVPESRS | LF | KR==
ADF | LV- | ALF-EKFPDSANFFA | DF | KGKS
KNG | -S- | LLFGLLFKTYPDTKK | HF | KHFD
LAA | -VF | TAYPDIQARFPQFAG | -K | DVAS
GSG | -VE | ILY-FFLNKFPGNFP | MF | KKLG

(d) Unnecessary alignment to check

Figure 5: Examples of suboptimal alignments of multiple protein sequences
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root = the optimal alignment

y o

Conceptual path heap

b d
(JO QO Q oo T

C (1 1]
(IO O eee T °

ooe all of these alignments have
two or more regions different
from the optimal alignment

NN NN TN

Figure 6: An example of a conceptual path heap. We can easily construct a heap which does

not contain unnecessary alignments such as ¢ and its all descendants.
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Hal
M

Sty

1 80
MS-DEQHQNLAIIGHVDHGKSTLVGRLLYETGSVPEHVIEQHKEEAEEKGKGGFEFAYVMDNLAEERERGVTIDIAHQEF

t MAKTKPILNVAFIGHVDAGKSTTVGRLLLDGGAIDPQLIVRLRKEAEEKGKAGFEFAYVMDGLKEERERGVTIDVAHKKF

MASQKPHLNLITIGHVDHGKSTLVGRLLYEHGEIPAHIIEEYRKEAEQKGKATFEFAWVMDRFKEERERGVTIDLAHRKF
MAKEKPHINIVFIGHVDHGKSTTIGRLLFDTANIPENIIKKFE-EMGEKGK-SFKFAWVMDRLKEERERGITIDVAHTKF
MS-QKPHLNLIVIGHVDHGKSTLIGRLLMDRGFIDEKTVKEAEEAAKKLGKDSEKYAFLMDRLKEERERGVTINLSFMRF
MPKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDQRTIEKFEKESAEMGKGSFKYAWVLDNLKAERERGITIDISLWKF
MGKEKTHINLVVIGHVDSGKSTTTGHIIYKLGGIDRRTIEKFEKESAEMGKGSFKYAWVLDKLKAERERGITIDIALWKF
MPKEKNHLNLVVIGHVDSGKSTSTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVLDKLKAERERGITIDIALWNF

81 160
STDTYDFTIVDCPGHRDFVKNMITGASQADNAVLVVAA-D---D-GV-QP-QTQEHVFLARTLGIGELIVAVNKMD-L-V
PTAKYEVTIVDCPGHRDFIKNMITGASQADAAVLVVNVDDA--KSGI-QP-QTREHVFLIRTLGVRQLAVAVNKMD-T-V
ETDKYYFTLIDAPGHRDFVKNMITGTSQADAAILVISARDG--E-GV-ME-QTREHAFLARTLGVPQMVVAINKMDATSP
ETPHRYITIIDAPGHRDFVKNMITGASQADAAVLVVAV-T---D-GV-MP-QTKEHAFLARTLGINNILVAVNKMD-M-V
ETRKYFFTVIDAPGHRDFVKNMITGASQADAAILVVSAKKGEYEAGMSAEGQTREHIILSKTMGINQVIVAINKMDLADT
ETSKYYFTIIDAPGHRDFIKNMITGTSQADVAILIVAAGTGEFEAGISKNGQTREHILLSYTLGVKQMIVGVNKMD-A-I
ETPRYFFTVIDAPGHKDFIKNMITGTSQADVALLVVPADVGGFDGAFSKEGQTKEHVLLAFTLGVKQIVVGVNKMD-T-V
ETAKSVFTIIDAPGHRDFIKNMITGTSQADAAILITASGQGEFEAGISKEGQTREHALLAFTMGVKQMIVAVNKMDDKSV

161 240
DYGESEYKQVVEEV-KDLLTQVRFDSENAKFIPVSAFEGDNIAEESEHTGWYDGEILLEALNELPAPEPPTDAPLRLPIQ
NFSEADYNELKKMIGDQLLKMIGFNPEQINFVPVASLHGDNVFKKSERNPWYKGPTIAEVIDGFQPPEKPTNLPLRLPIQ
PYSEKRYNEVKADA-EKLLRSIGFK-D-ISFVPISGYKGDNVTKPSPNMPWYKGPTLLQALDAFKVPEKPINKPLRIPVE
NYDEKKFKAVAEQV-KKLLMMLGYK-N-FPIIPISAWEGDNVVKKSDKMPWYNGPTLIEALDQMPEPPKPTDKPLRIPIQ
PYDEKRFKEIVDTV-SKFMKSFGFDMNKVKFVPVVAPDGDNVTHKSTKMPWYNGPTLEELLDQLEIPPKPVDKPLRIPIQ
QYKQERYEEIKKEI-SAFLKKTGYNPDKIPFVPISGFQGDNMIEPSTNMPWYKGPTLIGALDSVTPPERPVDKPLRLPLQ
KYSEDRYEEIKKEV-KDYLKKVGYQADKVDFIPISGFEGDNLIEKSDKTPWYKGRTLIEALDTMQPPKRPYDKPLRIPLQ
NWDQGRFIEIKKEL-SDYLKKIWLQPRQDPFIPISGWHGDNMLEKSPNMPWFTGSTLIDALDALDQPKRPKDKPLRLPLQ

241 320
DVYTISGIGTVPVGRVETGILNTGDNVSFQPSD-V----S-GEVKTVEMHHEEVPKAEPGDNVGFNVRGVGKDDIRRGDV
DVYTITGVGTVPVGRVETGIIKPGDKVVFEPAG-A----I-GEIKTVEMHHEQLPSAEPGDNIGFNVRGVGKKDIKRGDV
DVYSITGIGTVPVGRVETGVLKPGDKVIFLPAD-K----Q-GDVKSIEMHHEPLQQAEPGDNIGFNVRGIAKNDIKRGDV
DVYSIKGVGTVPVGRVETGVLRVGDVVIFEPASTIFHKPIQGEVKSIEMHHEPMQEALPGDNIGFNVRGVGKNDIKRGDV
EVYSISGVGVVPVGRIESGVLKVGDKIVFMPVG-K----I-GEVRSIETHHTKIDKAEPGDNIGFNVRGVEKKDVKRGDV
DVYKISGIGTVPVGRVETGILKPGTIVQFAPSG-V----S-SECKSIEMHHTALAQATPGDNVGFNVRNLTVKDIKRGNV
GVYKIGGIGTVPVGRVETGILKAGMVLNFAPSA-V----V-SECKSVEMHKEVLEEARPGDNIGFNVKNVSVKEIKRGYV
DVYKIGGIGTVPVGRVETGLLKPGMVLTFAPMN-I----T-TECKSVEMHHESLTEAEPGDNVGFTVKNLSVKDLRRGYV

321 400
CGPADDPPSVA--ET-FQAQIVVMQHPSVITEGYTPVFHAHTAQVACTVESIDKKIDPSSGEVAE-ENPDFIQNGDAAVV
LGHTTNPPTVA--TD-FTAQIVVLQHPSVLTDGYTPVFHTHTAQIACTFAEIQKKLNPATGEVLE-ENPDFLKAGDAAIV
CGHLDTPPTVV--KA-FTAQIIVLNHPSVIAPGYKPVFHVHTAQVACRIDEIVKTLNPKDGTTLK-EKPDFIKNGDVAIV
AGHTNNPPTVVRPKDTFKAQIIVLNHPTAITVGYTPVLHAHTLQVAVRFEQLLAKLDPRTGNIVE-ENPQFIKTGDSAIV
AGSVQNPPTVA--DE-FTAQVIVIWHPTAVGVGYTPVLHVHTASIACRVSEITSRIDPKTGKEAE-KNPQFIKAGDSAIV
ASDAKNQPAVG-CED-FTAQVIVMNHPGQIRKGYTPVLDCHTSHIACKFEELLSKIDRRTGKSMEGGEPEYIKNGDSALV
ASDTKNEPAKG-CSK-FTAQVIILNHPGEIKNGYTPLLDCHTSHISCKFLNIDSKIDKRSGKVVE-ENPKAIKSGDSALV
ASDSKNDPAKD-TTN-FLAQVIVLNHPGQIQKGYAPVLDCHTAHIACKFDEIESKVDRRSGKVLE-EEPKFIKSGEAALV

401 456
TVRPQKPLSIEPSSEIPELGSFAIRDMGQTIAAGKV--L---G---V-NE----- R
KLIPTKPMVIESVKEIPQLGRFAIRDMGMTVAAGMA--I---Q---VTAKN----K
KVIPDKPLVIEKVSEIPQLGRFAVLDMGQTVAAGQC--I---D---L-EK----- R

VLRPTKPMVIEPVKEIPQMGRFAIRDMGQTVAAGMV--I---S---I-QKA----E
KFKPIKELVAEKFREFPALGRFAMRDMGKTVGVGVI--I---D---VKPRKVE-VK
KIVPTKPLCVEEFAKFPPLGRFAVRDMKQTVAVGVV--K---A---V-T------P
SLEPKKPMVVETFTEYPPLGRFAIRDMRQTIAVGIINQLKRKNLGAVTAKAPA-KK
RMVPQKPMCVEAFNQYPPLGRFAVRDMKQTVAVGVIKEVVKKEQKGMVTKAAQKKK

Figure 7: The optimal alignment of the 8 EF-TU and EF-1a sequences
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Figure 8: Number of the suboptimal alignments of d sequences of EF-TU and EF-1a whose
scores are at most A worse than the optimal. (a) is the case enumerating all the alignments.
(0 < A <30) (b) is the case enumerating alignments in classes Dy and D;. (0 < A < 40)
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1 kkokk 80
Hal MSDEQ-HQNLAIIGHVDHGKSTLVGRLLYETGSVPEHVIEQHKEEAEEKGKGGFEFAYVMDNLAEERERGVTIDIAHQEF
Met MAKTKPILNVAFIGHVDAGKSTTVGRLLLDGGAIDPQLIVRLRKEAEEKGKAGFEFAYVMDGLKEERERGVTIDVAHKKF
Tha MASQKPHLNLITIGHVDHGKSTLVGRLLYEHGEIPAHIIEEYRKEAEQKGKATFEFAWVMDRFKEERERGVTIDLAHRKF
The MAKEKPHINIVFIGHVDHGKSTTIGRLLFDTANIPENIIKKFE-EMGEKGK-SFKFAWVMDRLKEERERGITIDVAHTKF
Sul MS-QKPHLNLIVIGHVDHGKSTLIGRLLMDRGFIDEKTVKEAEEAAKKLGKDSEKYAFLMDRLKEERERGVTINLSFMRF
Ent MPKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDQRTIEKFEKESAEMGKGSFKYAWVLDNLKAERERGITIDISLWKF
Pla MGKEKTHINLVVIGHVDSGKSTTTGHIIYKLGGIDRRTIEKFEKESAEMGKGSFKYAWVLDKLKAERERGITIDIALWKF
Sty MPKEKNHLNLVVIGHVDSGKSTSTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVLDKLKAERERGITIDIALWNF

81 *k *k
Hal STDTYDFTIVDCPGHRDFVKNMITGASQADNAVLVVAAD----D-GV-QP-QTQEHVFLARTLGIGELIVAVNKMD--LV
Met PTAKYEVTIVDCPGHRDFIKNMITGASQADAAVLVVNVDDA--KSGI-QP-QTREHVFLIRTLGVRQLAVAVNKMD--TV
Tha ETDKYYFTLIDAPGHRDFVKNMITGTSQADAAILVISARDG--E-GV-ME-QTREHAFLARTLGVPQMVVAINKMDATSP
The ETPHRYITIIDAPGHRDFVKNMITGASQADAAVLVVAVT----D-GV-MP-QTKEHAFLARTLGINNILVAVNKMD--MV
Sul ETRKYFFTVIDAPGHRDFVKNMITGASQADAAILVVSAKKGEYEAGMSAEGQTREHITLSKTMGINQVIVAINKMDLADT
Ent ETSKYYFTIIDAPGHRDFIKNMITGTSQADVAILIVAAGTGEFEAGISKNGQTREHILLSYTLGVKQMIVGVNKMD--AT
Pla ETPRYFFTVIDAPGHKDFIKNMITGTSQADVALLVVPADVGGFDGAFSKEGQTKEHVLLAFTLGVKQIVVGVNKMD--TV
Sty ETAKSVFTIIDAPGHRDFIKNMITGTSQADAAILITASGQGEFEAGISKEGQTREHALLAFTMGVKQMIVAVNKMDDKSV

161 240
Hal DYGESEYKQVVEEV-KDLLTQVRFDSENAKFIPVSAFEGDNIAEESEHTGWYDGEILLEALNELPAPEPPTDAPLRLPIQ
Met NFSEADYNELKKMIGDQLLKMIGFNPEQINFVPVASLHGDNVFKKSERNPWYKGPTIAEVIDGFQPPEKPTNLPLRLPIQ
Tha PYSEKRYNEVKADA-EKLLRSIGFK-D-ISFVPISGYKGDNVTKPSPNMPWYKGPTLLQALDAFKVPEKPINKPLRIPVE
The NYDEKKFKAVAEQV-KKLLMMLGYK-N-FPITPISAWEGDNVVKKSDKMPWYNGPTLIEALDQMPEPPKPTDKPLRIPIQ
Sul PYDEKRFKEIVDTV-SKFMKSFGFDMNKVKFVPVVAPDGDNVTHKSTKMPWYNGPTLEELLDQLEIPPKPVDKPLRIPIQ
Ent QYKQERYEEIKKEI-SAFLKKTGYNPDKIPFVPISGFQGDNMIEPSTNMPWYKGPTLIGALDSVTPPERPVDKPLRLPLQ
Pla KYSEDRYEEIKKEV-KDYLKKVGYQADKVDFIPISGFEGDNLIEKSDKTPWYKGRTLIEALDTMQPPKRPYDKPLRIPLQ
Sty NWDQGRFIEIKKEL-SDYLKKIWLQPRQDPFIPISGWHGDNMLEKSPNMPWFTGSTLIDALDALDQPKRPKDKPLRLPLQ

241 320
Hal DVYTISGIGTVPVGRVETGILNTGDNVSFQPSD-V----S-GEVKTVEMHHEEVPKAEPGDNVGFNVRGVGKDDIRRGDY
Met DVYTITGVGTVPVGRVETGIIKPGDKVVFEPAG-A- I-GEIKTVEMHHEQLPSAEPGDNIGFNVRGVGKKDIKRGDV
Tha DVYSITGIGTVPVGRVETGVLKPGDKVIFLPAD-K----Q-GDVKSIEMHHEPLQQAEPGDNIGFNVRGIAKNDIKRGDV
The DVYSIKGVGTVPVGRVETGVLRVGDVVIFEPASTIFHKPIQGEVKSIEMHHEPMQEALPGDNIGFNVRGVGKNDIKRGDYV
Sul EVYSISGVGVVPVGRIESGVLKVGDKIVFMPVG-K----I-GEVRSIETHHTKIDKAEPGDNIGFNVRGVEKKDVKRGDV
Ent DVYKISGIGTVPVGRVETGILKPGTIVQFAPSG-V----S-SECKSIEMHHTALAQAIPGDNVGFNVRNLTVKDIKRGNV
Pla GVYKIGGIGTVPVGRVETGILKAGMVLNFAPSA-V----V-SECKSVEMHKEVLEEARPGDNIGFNVKNVSVKEIKRGYV
Sty DVYKIGGIGTVPVGRVETGLLKPGMVLTFAPMN-I----T-TECKSVEMHHESLTEAEPGDNVGFTVKNLSVKDLRRGYV

321 *k 400
Hal CGPADDPPSVA--ET-FQAQIVVMQHPSVITEGYTPVFHAHTAQVACTVESIDKKIDPSSGEVAEE-NPDFIQNGDAAVY
Met LGHTTNPPTVA--TD-FTAQIVVLQHPSVLTDGYTPVFHTHTAQIACTFAEIQKKLNPATGEVLEE-NPDFLKAGDAAIV
Tha CGHLDTPPTVV--KA-FTAQIIVLNHPSVIAPGYKPVFHVHTAQVACRIDEIVKTLNPKDGTTLKE-KPDFIKNGDVAIV
The AGHTNNPPTVVRPKDTFKAQIIVLNHPTAITVGYTPVLHAHTLQVAVRFEQLLAKLDPRTGNIVEE-NPQFIKTGDSAIV
Sul AGSVQNPPTVA--DE-FTAQVIVIWHPTAVGVGYTPVLHVHTASIACRVSEITSRIDPKTGKEAEK-NPQFIKAGDSAIV
Ent ASDAKNQPAVG-CED-FTAQVIVMNHPGQIRKGYTPVLDCHTSHIACKFEELLSKIDRRTGKSMEGGEPEYIKNGDSALY
Pla ASDTKNEPAKG-CSK-FTAQVIILNHPGEIKNGYTPLLDCHTSHISCKFLNIDSKIDKRSGKVVEE-NPKAIKSGDSALV
Sty ASDSKNDPAKD-TTN-FLAQVIVLNHPGQIQKGYAPVLDCHTAHIACKFDEIESKVDRRSGKVLEE-EPKFIKSGEAALV

ok sk ok ok %k ok %k

401
Hal TVRPQKPLSIEPSSEIPELGSFAIRDMGQTIAAGKV--L
Met KLIPTKPMVIESVKEIPQLGRFAIRDMGMTVAAGMA--I
Tha KVIPDKPLVIEKVSEIPQLGRFAVLDMGQTVAAGQC--I------ DL-EK----- R
The VLRPTKPMVIEPVKEIPQMGRFAIRDMGQTVAAGMV--I QKA----E
Sul KFKPIKELVAEKFREFPALGRFAMRDMGKTVGVGVI--I------ DVKPRKVE-VK
Ent KIVPTKPLCVEEFAKFPPLGRFAVRDMKQTVAVGVV--K------ AV-TP======
Pla SLEPKKPMVVETFTEYPPLGRFATIRDMRQTIAVGIINQLKRKNLGAVTAKAPA-KK
Sty RMVPQKPMCVEAFNQYPPLGRFAVRDMKQTVAVGVIKEVVKKEQKGMVTKAAQKKK

Figure 9: An example of suboptimal alignments of the 8 EF-TU and EF-1a sequences

1 83
Lum KKQCGVLEGLKVKSEWGRAYGSGHDREAFSQAIWRATFAQVPESRSLFKRVHGDH-TS--DPA-FIAHAERVLGGLDIAISTL
Apl S-LSAAEADL-AGKSWAPVFAN-KN--ANGADFLVALFEKFPDSANFFADFKGKSVADIKASPKLRDVSSRIFTRLNEFVNNA
Bus G-LDGAQKTA-LKESWKVLGADGPTMMKNGSLLFGLLFKTYPDTKKHFKHFDDATFAAMDTTGVGKAHGVAVFSGLGSMICSI
Ct7 APLSADQASL-VKSTWAQV----RN--S-EVEILAAVFTAYPDIQARFPQFAGKDVASIKDTGAFATHAGRIVGFVSEIIALI
Ct3 V-ATPAMPSM-TDAQVAAVKGDWEKIKGSGVEILYFFLNKFPGNFPMFKKL-GNDLAAAKGTAEFKDQADKIIAFLQGVIEKL

84 165
Lum DQP--A-TLKEELDHLQVQHEGRKIPDNYFDAFKTAILHVVAAQLGERCYSNNEEI-HDATACDGFARVLPQVLERGIKGHH
Apl ANA--G-KMSAMLSQFAKEHVGFGVGSAQFENVRSMFPGFVAS-VA----APPAGA-DAAWT-KLFGLII-DAL---KAAGA
Bus DDD--D-CVBGLAKKLSRNHLARGVSAADFKLLEAVFKZFLDE--A----TQRKAT-DAQKD-AD-GALL-TML---IKAHV
Ct7 GNESNAPAVQTLVGQLAASHKARGISQAQFNEFRAGLVSYVSS-NV----AWNAAA-ESAWT-AGLDNIF-GLL---FAA-L
Ct3 GSDM-G-GAKALLNQLGTSHKAMGITKDQFDQFRQALTELLGN-LG---FGGNIGAWNATVD-LMFHVIF-NAL---DGTPV

Figure 10: One of the optimal alignments of the 5 globin sequences
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Figure 11: Number of the suboptimal alignments of d globin sequences whose scores are at
most A worse than the optimal alignment. (a) is the case enumerating all the alignments.
(0 < A <20) (b) is the case enumerating alignments in classes Dy and D;. (0 < A < 40)
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Figure 12: An example of division of 1-parameter space. In this case, there are 4 regions between

p1 and ps.
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Figure 13: Number of visited nodes by A* algorithm for various gap penalties.

Figure 14: The optimal alignment of 5 rhodopsin sequences based on PAM-250

1 * * 55
Hal ==GLALVQSVGVTSWAYS-VLDVF-AK-YVF---AF-I-LLR-WV-ANN---ER=
HSg NPGYPFHPLMAALPAFFAKSATIYNPVIYVFMNRQFRNCILQ-LF-GKK----V=
HSr NPGYAFHPLMAALPAYFAKSATIYNPVIYVFMNRQFRNCILQ-LF-GKK----V=
GGd NQGSDFGPIFMTIPAFFAKSSATIYNPVIYIVMNKQFRNCMITTLCCGKNPLGDED
HSb NRNHGLDLRLVTIPSFFSKSACIYNPIIYCFMNKQFQACIMK-MVCGKAMTDESD
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Figure 15: The optimal alignment of 5 rhodopsin sequences when the score for K-K is between
89 and 124

1 * 60
Hal GLALVQSVGVTSWAYSVLDVFAK--YVF-A--FILL-R--W---VAN---NER=======
HSg N----PGYPFHPLMAALPAFFAKSATIYNPVIYVFMNRQFRNC-ILQLF-GKK-V=====
HSr N----PGYAFHPLMAALPAYFAKSATIYNPVIYVFMNRQFRNC-ILQLF-GKK-V=====
GGd N----QGSDFGPIFMTIPAFFAKSSAIYNPVIYIVMNKQFRNCMITTLCCGKNPLGDE-D
HSb N----RNHGLDLRLVTIPSFFSKSACIYNPIIYCFMNKQFQAC-IMKMVCGKA-MTDESD
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(a) Case of the alignment of 4 rhodopsin sequences
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(a) Case of the alignment of 5 rhodopsin sequences

Figure 16: Number of visited nodes by A* algorithm for various scores for K-K. The dotted lines

denote the boundaries of the regions where the optimal solution is same.
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