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Abstract

In molecular biology, it is said that two biological sequences tend to have similar properties if
they have similar 3-D structures. Hence, it is very important to find not only similar sequences
in the string sense, but also structurally similar sequences from databases. In this paper, we
propose a new data structure that is a generalization of a parameterized suffix tree (p-suffix tree
for short) introduced by Baker. We call it the structural suffix tree or s-suffix tree for short.
The s-suffix tree can be used for finding structurally related patterns of RNA or single-stranded
DNA. Furthermore, we propose an O(n(log|X| + log |II|)) on-line algorithm for constructing it,
where n is the sequence length, |X| is the size of the normal alphabet, and |II| is that of the
alphabet called “parameter”, which is related to the structure of the sequence. Our algorithm
achieves linear time when it is used to analyze RNA and DNA sequences. Furthermore, as
an algorithm for constructing the p-suffix tree, it is the first on-line algorithm, though the
computing bound of our algorithm is same as that of Kosaraju’s best-known algorithm. The
results of computational experiments using actual RNA and DNA sequences are also given to
demonstrate our algorithm’s practicality.

keywords: pattern matching, suffix tree generalization, parameterized suffix tree,
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1 Introduction

The 3-D structure of a biological sequence plays a major role in determining its functions and
properties, and sequences that have similar structures often have similar functions, even if the
sequences themselves are not similar. Thus it is very important to predict, compare, or find
structures of sequences in molecular biology, but they are very difficult and challenging tasks.
On the other hand, stringological comparison of biological sequences without considering their
structures is much easier. There are many efficient algorithms for it. For example, we can find
frequently appearing substrings in a sequence very efficiently using a very useful data structure
called suffix trees [9, 10, 15, 18, 21]. In this paper, we strive for generalizing the suffix trees to do
structural analysis of RNA sequences as efficiently as we do ordinary string analysis.



RNA sequences consist of four kinds of bases: A (adenine), U (uracil), C (cytosine), and G
(guanine). Note that in DNA, T (thymine) is present instead of U. A and U (T for DNA) are said
to be complements of each other, and C and G are also complementary bases. RNA and single-
stranded DNA sequences often form some structures by combining two complementary base pairs.
It is known that double-stranded DNA sequences sometimes form such structures by becoming
single-stranded locally. Many computational studies have been done to predict RNA secondary
structure, comparing a new sequence with a known RNA structure, searching a known RNA or
DNA structures from large databases, and so on [2, 10, 12, 13, 16, 17, 19, 20]. But many of them
are much slower than ordinary string comparison analyses which are often done in linear time. Our
work will find a way out of it.

Let us consider the two RNA sequences in Figure 1 (1). The two sequences are not at all similar
to each other: there are no identical bases in identical positions. In sequence 1, A’s are located at
the 1st, 3rd, 8th, and 15th positions. In sequence 2, C’s are located at the same position as A’s in
sequence 1. Similarly, A’s, U’s, and G’s in sequence 2 are located at the same positions as G’s, C’s,
and U’s in sequence 1, respectively. Recall that A and U can combine with each other, and that C
and G can also combine with each other. We then notice the following fact: If two bases in one of
these sequences can combine with each other, then in the other sequence, two bases at the same
two positions are also able to combine with each other. This implies that a structure that can be
formed by one of the sequences can also be formed by the other sequence. Thus there is a strong
possibility that these two sequences have the same structure, and consequently may have similar
properties. For example, Figure 1 (2) shows one of the structures that can be formed by both
sequences.

To deal with these structurally related sequences, we propose a new matching paradigm called
the structural matching (s-matching for short), which is a generalization of the parameterized
matching (p-matching for short) introduced by Baker [3, 4, 5, 6, 7]. Note that we will describe
the p-matching paradigm in section 2.1 as a preliminary. In the s-matching paradigm, a notion of
matching is different from an ordinary matching, as in the following definition.

Definition 1 Let X and II be disjoint finite alphabets. We call the characters in 3 the “fived
symbols” and those in I the “parameters.” Some of the characters in I have one-to-one corre-
spondences to other characters in I, and two characters that correspond to each other are called
complementary characters or complements of the other. No two characters can be complements of
one same character, and let complement(z) be a function that outputs the complement of a param-
eter x. A string in (X UIL)* is called a structural string, or s-string for short. Two s-strings S and
S" are said to s-match if they satisfy the following two conditions: (1) there exists a one-to-one
mapping from I to 11 such that S becomes S" as a result of applying it, and (2) if = is mapped to y
in the mapping, then the complement of x is also mapped to the complement of y in the mapping.

For example, if ¥ = {AB}, Il = {z,y, z,w}, and z and y are complements of z and w, respec-
tively, then ABxByAzwz and ABwBzAyzy s-match, but ABzByAzwz and ABwBxAzyz do not. Note
that if there are no complementary pairs in II, an s-string is same as the p-string proposed by
Baker, which will be introduced in section 2.1.

Then a pair of structurally related RNA sequences stated above can be described as a pair of
s-matching sequences in the following situation if they have at least one pair of complementary



bases in them: ¥ = ¢, I = {A, U, C, G}, and A and C are complementary characters of U and
G, respectively. If two RNA sequences s-match with each other, it can be said that there is a
high possibility that the two sequences have the same structure and that they may have similar
properties as a result. For example, the two sequences in Figure 1 (1) s-match.

We will generalize the suffix tree data structure to deal with the s-matching strings, and call it
the structural suffix tree (or s-suffix tree for short). Using the s-suffix tree, we can efficiently find
a set of substrings in some given sequence(s) that are structurally related (maybe identical), query
substrings that might be structurally related to another given string, and so on. We will at first
propose an O(n(log || + |TI|?)) on-line algorithm for constructing the s-suffix tree, where n is the
sequence length, |X| is the size of the normal alphabet, and |II] is that of the parameter alphabet.
After that, we will improve it to an O(n(log || +log |II|)) time algorithm. These algorithms achieve
linear time when they are used to analyze RNA and DNA sequences. Furthermore, as an algorithm
for constructing the p-suffix tree, our algorithm is the first on-line algorithm, though the computing
bound of our algorithm is same as that of Kosaraju’s best-known algorithm [14].

In the following, we first introduce suffix trees and p-suffix trees, and briefly describe Ukkonen’s
suffix tree construction algorithm and Baker’s p-suffix tree construction algorithm, as preliminaries
in section 2. In section 3, we first define the s-suffix trees, and we then propose an efficient on-
line algorithms for constructing the s-suffix trees based on the Ukkonen’s algorithm. In section 4,
we give the results of computational experiments using HIV RNA complete sequences and DNA
sequences of E. coli (Escherichia coli). In section 5, we will give concluding remarks.

2 Preliminaries

2.1 Suffix Trees and p-Suffix Trees

The suffix tree [9, 10, 15, 18, 21] of a string S € £ is the compacted trie of all the suffixes of ST = S$
where § is a character such that $§ ¢ X. This data structure is very useful for various problems
in sequence pattern matching. Using it, we can query a substring of length m in O(mlog|%|)
time [10]. Moreover, we can find frequently appearing substrings in a given sequence or a common
substring of many sequences very easily.

The tree has n + 1 leaves, and each internal node has more than one child. Each edge is labeled
with a non-empty substring of ST, and no two edges out of a node can have labels that start with
the same character. Each node is labeled with the concatenated string of edge labels on the path
from the root to the node, and each leaf has a label that is a different suffix of ST. Because each
edge label is represented by the first and the last indices of the corresponding substring in S, the
data structure can be stored in O(n) space.

This data structure was first proposed by Weiner [21], who gave an O(n|X|) algorithm for
constructing it, where n is the string length and |X| is the size of the alphabet. McCreight [15]
improved it by giving an O(nlog|X|) algorithm. After that, Ukkonen [18] proposed an on-line
O(nlog|X|) algorithm, which processes a string character by character from left to right. Then
Farach [9] proposed an O(n) algorithm for an integer alphabet {1,...,n}.

A parameterized string, or a p-string for short, is a string over the union of two alphabets



Y and II, where ¥ is an ordinary alphabet and II is a set of parameters [3, 4, 5, 6, 7. Two
p-strings are said to match if they are same except for a one-to-one correspondence between the
characters in II occurring in them. For example, two p-strings ACxBCyzyAzxC and ACyBCzxzAxyC
match (X = {A,B,C} and IT = {z,y, z}).

Let S[i] denote the ith character of S, and STi..j| denote a substring of S that starts at position
i and ends at position j. As in [5], we define prev(S) for any p-string S as follows:

Definition 2 Let N be the set of nonnegative integers. Consider a string S[l..n] € (X UID)". If
S[i] € 11, let ¢; be the index of the nearest same parameter in I to the left, i.e., ¢; < i, S[c;] = S[i]
and S[k] # S[i] for any k such that ¢; < k < i. If such ¢; does not exist, let ¢; = i. Now, replace
S[i] with i —¢; € N if S[i] € 11, for all i: We let the obtained string in (3 U N)™ be prev(S).

For example, prev(ACzBCyzyAzxC) = ACOBCO02A38C. We can compute the prev encoding for
string S of size n in O(n - log min(n, |II|)) time and O(n) space by means of a balanced tree
structure, which can be computed on-line. If II is known and can be used as an index to a table
of |II], it can be computed in O(n + |II]) time and space. (The algorithm for it will be given in
section 3.1.) The p-suffix tree of a p-string S is the compacted trie of all the prev-encoded suffixes,
i.e., prev(ST[i.n + 1]) for all positions i, where ST = S$ and § is a character in neither ¥ nor II.
We here consider $ as an ordinary alphabet character, not as a parameter. Notice that a suffix of a
prev encoding of string S is sometimes different from the prev encoding of the suffix of S with the
same length, which cause a difficulty in constructing the p-suffix trees. Baker [3, 5, 6] proposed this
data structure and showed that it can be constructed in O(n(|II| + log |X|)) time. Kosaraju [14]
improved the time by giving an O(n(log|II| 4+ log|X|)) algorithm. Both of the algorithms are based
on McCreight’s suffix tree construction algorithm [15] and neither supports on-line computation.
This paper will give an on-line algorithm for the same task, based on Ukkonen’s algorithm [18].

In the following sections, we use the following definitions. In a suffix tree, let parent(u) be the
parent node of node u, let o, be the string label of node u, and let node(a)) be node u in the tree
such that o, = «a if it exists. Let the length of an edge (v, w) (v = parent(w)) be the length of the
corresponding substring, i.e., |0y | — |oy|. A ‘locus’ is a position on an edge (including both ends,
i.e., nodes) of a suffix tree. Let z be a locus on an edge (v,w) (v = parent(w)) whose distance
from visd (0 < d < |ow| — |oy]), and let a be a prefix of o,, whose length is |o,| + d. We call z
the locus of a. Conversely, we call « the label of the locus z. The locus of a can be considered to
be the same as node(«a) if it exists, therefore we also call node(«) the locus of « in this case. The
suffix link of u is a link to a node with label « if u has a label of ca, where ¢ is any single character.
It is known that a suffix link always exists for any u except for the root in a suffix tree [10, 15, 18].
If u is the root we let its suffix link be u itself. Let sl(u) be the suffix link of u.

2.2 Ukkonen’s Suffix Tree Construction Algorithm

In this section, we briefly describe Ukkonen’s suffix tree construction algorithm. The implicit suffix
tree of S is the compacted trie of all the suffixes of S, and a label for an edge that ends at a leaf
is represented by only the first index of the label. Let T; (1 <i < n + 1) denote the implicit suffix
tree of ST[1..i], where n = |S|. Ukkonen’s algorithm consists of n + 1 phases, and in the ith phase,
we construct the implicit suffix tree T; from T; 1.



In the ith phase, we construct a new node u = node(S*[j..i]) for all 1 < j < i in increasing
order, if there is no locus for S*[j..i] in the tree. When we must construct such new node u, if there
is no node with a label of S*[j..i — 1], we must also construct a new internal node at the locus of
St[4..i — 1], and let it be the parent of u. We call this procedure for single j the jth extension of the
ith phase. Notice that we do not have to construct node u = node(S™[j..7]) if v = node(S™[j..i —1])
was a leaf in the previous phase, because of the definition of the implicit suffix tree: o, is ST[j..7]
in this phase. Thus, if there is a leaf for each of node(S*[j..i — 1]) for all j < k in phase i — 1,
we can begin by constructing node(ST[j + 1..i]) in this phase. Furthermore, if there is a locus for
St[j..7] for some j, there already exist loci for S*[k..7] (k > j) too, and that there is no need to
construct nodes for them in this phase.

Ukkonen’s algorithm maintains at each node u of the suffix tree a suffix link s/(u). In any phase,
we construct new leaves u; = node(S7[j..i]) for several consecutive j’s and a new internal node
u); =node(S*[j..i — 1]) if necessary, in the manner described above. Notice that uj1 = sl(u;) and
ug =8l (u;) if they exist. For the last u; to be constructed in this phase, we will encounter an
existing node at the locus sl(u}) = S*[j 4 1..i — 1] in the next extension of the algorithm. For the
last u; to be constructed in this phase, which is called an ‘active point’ by Ukkonen, the suffix link
will be found as u;; constructed in a later phase. In this way, we can maintain the suffix links.
Note that the suffix links of leaves are not necessary to be maintained in the Ukkonen’s algorithm,
because we do not use them. Using the suffix links, we can construct node u; = node(S*[j..i))
faster: As sl(parent(u;_1)) must be an ancestor of u;, we can find the locus of ST[j..i — 1] by tracing
edges from sl(parent(uj_i)). We call tracing from the suffix link to the target locus “scanning.”
(Note that Ukkonen called it “canonizing.”) Let w be a node scanned in the jth extension of the
ith phase. Then the label of w is S*[j..fj.] where f;,, = j + |ow| — 1. As the value f;,, differs
from any other scanned nodes in any phase of the algorithm, the number of scanned nodes is at
most n + 1. Moreover, the number of constructed nodes is also O(n) and the number of phases is
n + 1. Therefore the total time complexity of this algorithm is O(nlog |3]), as it takes O(log|%])
time to find the outgoing edge with the desired label from a node.

2.3 Baker’s p-Suffix Tree Construction Algorithm

In this section, we briefly introduce McCreight’s suffix tree construction algorithm [15] and Baker’s
p-suffix tree construction algorithm [3, 5, 6] which is based on the McCreight’s algorithm.

The McCreight’s algorithm computes the suffix tree by inserting suffixes, ST[1..n+1], ST[2..n+
1],...,8"[n + 1..n + 1], one after the other in this order, into an initially empty tree. We call the
the insertion procedure of nodes related to the suffix S*[i..n + 1] the ith phase. In the ith phase,
the algorithm first finds the locus of the longest prefix of the suffix S*[i..n + 1] that exists in the
trie constructed in the previous ¢ — 1 phases. Then the algorithm adds a new node to the locus
and add a new leaf whose label is ST[i..n + 1] as a child of the new node. Like the Ukkonen’s
algorithm, it also uses suffix links to find where to insert the new node and the new leaf to the trie.
After a new node v and a new leaf are inserted, it scans the trie from w = sl(parent(v)) to find
the new locus to insert another node for the next suffix, as w is an ancestor of the next locus to
find. The algorithm also finds the suffix link of v during the scanning, which is guaranteed to exist.
The time complexity is O(nlog|X|), which is same as Ukkonen’s, but it does not support on-line



computation.

Baker’s p-suffix tree construction algorithm is based on the McCreight’s algorithm. It also
inserts p-suffixes one by one in the same order as in the McCreight’s algorithm. The difference
between the two algorithms lies in the suffix links, except for which the two algorithms are the
same. In p-suffix trees, unlike ordinary suffix trees, the existence of suffix links are not guaranteed
for all the nodes in the tree. For example, consider the case that two substrings xBCyzyAzx and
yBCzxwxAwz exist in the target string. The prev-encoding of these two substrings are 0BCO02A38 and
0BC002A30, and there exists a node v at the locus of 0BCO02A3. The suffix link of v must points to
a node at the locus of BCO02A3, but the prev-encoding of two substrings BCyzyAzx and BCrwzrAwz
are both BC002A30, and there is no guarantee of the existence of the node. Baker’s algorithm uses
implicit suffix link that points to the node above the locus of the corresponding suffix. While
computing the p-suffix tree, the implicit suffix links must be changed often, because the node to
point must be changed when new nodes are inserted between the pointed node and the desired
locus. Baker showed that the maintenance of the implicit suffix links during the computation of a
p-suffix tree can be done in O(n|II]) time in total, and the rest of the computation can be done in
O(nlog|X|) time. Thus the total computation time of the Baker’s algorithm is O(n(|II] 4 log |X])).
Kosaraju [14] further improved the time complexity to O(n(log |II| 4+ log |X|)) by maintaining the
implicit suffix links with a data structure called a concatenable queues [1] (c-queue for short), but
it is a very complicated algorithm.

Our algorithm presented hereinafter will be based on the Ukkonen’s algorithm, not on the
McCreight’s algorithm, but it will also use the implicit suffix links (though the definition is a little
different). The maintenance of the implicit suffix links is also a problem in our algorithm, and we
will solve it in the next section. We will also use the c-queues to improve the time complexity of
our algorithm as Kosaraju did to the Baker’s algorithm, but in a different way.

3 Structural Suffix Trees

3.1 s-Encodings and s-Suffix Trees

In this section we define the s-encodings and the s-suffix trees, which are useful to study s-strings.
The following two encodings are useful for determining s-matching of two sequences described in
Definition 1. One is prev(S) that is already defined in Definition 2. The other is compl(S) defined
as follows:

Definition 3 Let N be the set of nonnegative integers (N N (X UII) = 0). Consider a string
S[l.n] € (BUI)™. If S[i] € I, let ¢; be the index of the nearest complementary parameter in
Il to the left, i.e., ¢; < i, Sle;] = x; and S[k] # x; for any k such that ¢; < k < i, where z; is
the complement of S[i]. If such ¢; does not exist, let ¢; = i. Now, replace S[i] with i —c¢; € N if
S[i] € 1L, for all i: We let the obtained string in (3 U N)™ be compl(S).

For example, compl(ABzByAzwz) = ABOB0A436 if ¥ = {A,B}, Il = {z,y,2,w}, and x and y are
complements of z and w, respectively. This definition is very similar to that of prev encoding.

The complement of a given character can be accessed in O(log |II]) time if the information is
stored in a sorted array or a balanced tree data structure, either of which can be constructed in



O(|I1] log |II]) time. If IT can be used as an index to a table, the complement can be obtained
in O(1) time. The computation of these two encodings can be computed on-line as follows. Let
last_position(p) be an indexing data structure for parameters p € |II| whose contents are integers.
If IT is known and can be used as an index to a table of |II|, an update of the content for a parameter
can be done in O(1) time. Otherwise the update takes O(logm) time, where m is the number of
used parameters, using a balanced search tree.

Algorithm 1 (prev & compl Computation) Let last_position(p) =0 for all the parameters p
at first. For 1 <i <mn, let prev(S)[i] = compl(S)[i] = S[i] if S[i] is an ordinary alphabet character,
and otherwise do the following.

1. Set 0 to prev(S)[i] if last_position(prev(S)[i]) = 0. Otherwise set i — last_position(prev(S)]i])
to prev(S)[i].

2. Similarly, set 0 to compl(S)[i] if last_position(complement(prev(S)[i])) = 0. Otherwise set
i — last_position(complement(prev(S)[i])) to compl(S)[i].

3. Set i to last_position(S[i]).

In this way, we can compute on-line both the prev and the compl encodings for a string S of size n
in O(n -log min(n, |I1])) time and O(n) space. If IT is known and can be used as an index to a table
of |II], it can be computed in O(n + |II|) time and space. The relationship between the s-matching
and these two encodings is given in the following lemma.

Lemma 1 s-strings S and S’ are an s-match if and only if prev(S) = prev(S’) and compl(S) =
compl(S').

Proof: Two s-matching s-strings satisfy the two conditions in Definition 1. Trivially, applying to
S a one-to-one mapping from II to II does not change prev(S)[i] for any i, because the position
of the previous same character of any character does not change. Furthermore, because of the
condition (2), the mapping does not change compl(S)[i] for any 1.

Next, assume that two s-strings S and S’ satisfy prev(S)[i] = prev(S')[7] for any . If

S[i] = S[j] (i < j), there is a sequence of indices iy,is,...,% such that i = iy, j = i,
and i; = 441 —prev(S)[i41] for all I (1 <1 < k). As the prev encoding of S’ is equal to S,
S'li1] = S'[ig) = - -+ = S'[ig]. Thus we conclude that S'[{] = S'[4] if S[i] = S[j]. By doing the same

discussion we can prove that S[i] = S[j] if S’[i] = S'[j]. Thus the two s-strings satisfy the condition
(1).

Finally, assume that the two s-strings S and S’ satisfy compl(S)[i]] = compl(S’)[i] and
prev(S)[i] = prev(S')[7]] simultaneously for any i. Consider two indices ¢ and j such that
i < j and S[i] = complement(S[j]). Let k = j—compl(S)[j]. Then S[i] = S[k]. As al-
ready proved, it means that S’[i] = S'[k]. As the compl encodings of the two s-strings are
the same, S'[i]] = S'[k] = complement(S'[j]). By doing the same discussion, we can prove that
S[i] = complement(S[j]) if S'[i] = complement(S'[j]). Consequently they satisfy the condition (2).
Hence we conclude that S and S’ are an s-match if and only if prev(S) = prev(S’) and compl(S)
= compl(S’). O

Furthermore, we obtain the following lemma.



Lemma 2 Assume that S[1..i] and S'[1..i] are an s-match. Then, if prev(S)[i+1] = prev(S')[i+1]
# 0, compl(S)i + 1] = compl(S')[i + 1]. Similarly, if compl(S)[i + 1] = compl(S’)[i + 1] # 0,
prev(S)fi + 1] = prev(S’)[i +1].

Proof: At first, we consider the former case where prev(S)[i + 1] = prev(S’)[i + 1] # 0. Let j be
i+ 1—prev(S)[i + 1] (= i + 1—prev(S’)[i + 1]). According to the definition of the prev encoding,
S[j] = S[i+1] and S'[j] = S'[i +1]. Let k be the largest integer such that S[k] = complement(S[j])
and 1 < k <. If it does not exist, let k = i+1. As S[1..i] and S’[1..i] are an s-match, the k value is
also the largest integer such that S’[k] = complement(S'[j]) if & < i. It means that compl(S)[i + 1]
= compl(S")[i +1] =i+ 1—k.

The latter case can be proved as follows. Let j be i+1—compl(S)[i+1] (= i+1—compl(S’)[i+1]).
According to the definition of the compl encoding, S[j] = complement(S[i + 1]) and S'[j] =
complement(S'[i + 1]). Let k be the largest integer such that S[k] = complement(S[j]) and 1 <
k <. If it does not exist, let k =i + 1. As S[1..i] and S’[1..7] are an s-match, the k value is also
the largest integer such that S'[k] = complement(S'[j]) if k& < i. It means that prev(S)[i + 1] =
prev(SHi+1] =i+ 1—k. 0

It means that, when we check s-matches of strings, we do not have to see the other encoding if
one of the encodings encodes a character to a non-zero number. To check s-matching easier based
on this lemma, we define a new encoding called s-encoding as follows.

Definition 4 For a given string S, compute prev(S) and compl(S). If prev(S)[i] = 0, replace
it with —compl(S)[i], which is a nonpositive value. We call this new encoded string in (X U I)*
(I: integer) as a structural encoding of S, or an s-encoding for short. Let sencode(S) denote the
s-encoding of S.

Notice that, if we have the prev(S) and compl(S) encoded strings, we can obtain the value
of sencode(S[i..n])[j] for any 7 and j in constant time as follows. If 0 < prev(S)[i + j —
1] < j, sencode(S[i..n])[j] =prev(S)[i + j — 1]. Otherwise, if 0 < compl(S)[i + 5 — 1] < 7,
sencode(S[i..n])[j] =compl(S)[i+j—1]. Otherwise, sencode(S[i..n])[j] = 0. We call sencode(S[i..n)
(1 < i < n =S| an s-suffix of sencode(S) for any s-string S. But sencode(S[i..n]) is not al-
ways a suffix of sencode(S). It is because sencode(S[i..n])[j — i + 1] # sencode(S[1..n])[j]. if
sencode(S[L..n])[j] > j — 1.

Now we can check s-matching much easier based on the following lemma.

Lemma 3 The s-strings S and S’ are an s-match if and only if sencode(S) = sencode(S’).

Proof: According to Lemma 1, s-strings S and S’ are an s-match if and only if prev(S) = prev(S’)
and compl(S) = compl(S’). Therefor it is trivial that sencode(S) = sencode(S’) if the s-strings S
and S’ are an s-match. Moreover, if sencode(S) = sencode(S’), the two s-strings satisfy prev(S) =
prev(S’) and compl(S) = compl(S’) according to Lemma 2. Hence we conclude that the s-strings
S and S’ are an s-match if and only if sencode(S) = sencode(S’). O

The structural suffix tree of string S, or the s-suffix tree of S for short, is the compacted trie of
the s-encoded strings of all the suffixes of ST = S$, where $ is a character that is in neither ¥ nor
I1. We here consider $ as an ordinary alphabet character, not as a parameter. As in the case of



an ordinary suffix trees, the tree has n 4 1 leaves, and each internal node has more than one child.
Each edge is labeled with a non-empty substring of s-encoded suffixes in (X U I)*. We call these
labels s-labels to distinguish them with the labels of the ordinary suffix trees. Each node has an
s-label of the concatenated string of edge s-labels on the path from the root to the node, and each
leaf has an s-label of an encoding of different suffix of ST. Each edge s-label is represented by the
first and the last indices of the corresponding substring of ST. Figure 2 shows an example of the
s-suffix tree, in which the s-labels are described with the prev and compl encodings.

In the s-suffix tree, we call the locus of sencode(a) just the locus of o € (X U II)*. We refer to
« as the original substring of the s-label of the locus. There can be several original substrings for
one locus. As in the case of the ordinary suffix trees, let o, denote the s-label of u, and node(c)
denote the node at the locus of s-label o if it exists. Let node(a) (o € (X UTI)*) also denote the
node at the locus of sencode(a). As in the case of p-suffix trees, the nodes in the s-suffix trees
does not always have explicit suffix links to other nodes. For s-suffix trees, we define suffix links as
follows, which is similar to the definition of the suffix links for the p-suffix trees by Baker.

Definition 5 Let u be a node in an s-suffix tree. If u is the root, the suffix link of u is the root
itself. Otherwise, let o/ be the s-label of u. The suffiz link is a pointer to a node or an edge at the
locus of an s-suffiz of o/ whose length is |o/| — 1. Let sl(u) denote the suffiz link of u as in the case
of suffiz trees. sl(u) is said to be explicit if it is a node, and otherwise it is said to be implicit.

We say an s-string P ‘s-appears’ in an s-string 7T if the s-encoding of P is equivalent to the
s-encoding of some substring in 7'. Using the s-suffix tree of 7', we can check whether or not a given
structural pattern of size m s-appears in T in O(mlog(|X| + |II|)) time, as the number of children
of a node is bounded by |¥| + |II|. Moreover, we can use this data structure for finding a set of
substrings that s-match with each other. We call such substrings s-repeats. Consider an s-repeat
« of length [ that s-appears r times (r > 1). If any s-string that is constructed by extending « to
the right, such as ac (¢ € (X UII)), s-appears less than r times, we call @ a “maximal structural
pattern.” A maximal structural pattern corresponds to the s-label of an internal node in the s-
suffix tree, and r equals to the number of leaves under the corresponding node. Thus we can list
s-repeats whose lengths are larger than [ and that s-appear more than r times, just by traversing
the corresponding nodes and outputting their s-labels, which can be done in O(n + Typyupyt) time,
where Toy4p0¢ is the output size.

3.2 Basic Algorithm for Constructing s-Suffix Trees

In this section, we describe the basic algorithm for constructing the s-suffix tree based on Ukkonen’s
algorithm. Note that any algorithm for constructing the s-suffix trees for s-strings can be used also
for constructing the p-suffix trees for p-strings, as the s-string is a generalization of the p-string.
The implicit s-suffix tree of S is the compacted trie of all the s-encoded suffixes of S, and an
s-label for an edge that ends at a leaf is represented by only the first index of the s-label in it. Let
T; denote the implicit s-suffix tree of S*[1..7] for an integer ¢ (0 < ¢ < |S| + 1). Like Ukkonen’s
algorithm, our basic algorithm consists of n+1 phases, and in the ith phase, we construct an implicit
s-suffix tree T; from T;_;. As in Ukkonen’s algorithm, we construct a new node u = node(SJj..i)
for all 1 < j < i in increasing order, if there is no locus for S[j..7] in the tree in the ith phase.



We call this procedure for single j the jth extension as in the description of Ukkonen’s algorithm.
The ith phase is described in Algorithm 2 below. Furthermore, the overall algorithm is given in
Algorithm 3. You will find that the algorithm is very similar to the Ukkonen’s algorithm. The
difference lies in the existence of the implicit suffix links. In Algorithm 2, we begin the procedure
from the j;th extension, and we let start_locus be some ancestor locus (a node or an edge) of the
locus of Sjj..7].

Algorithm 2 (Algorithm for the ith Phase: sstree_phase(i, j;, start_locus)) Let j = j;, and
[ be startlocus, and execute the following extension procedure.

1. Find the locus (I') of S*[j..i — 1], which is guaranteed to exist, by tracing the tree from locus
[, which we call scanning. During the scanning, we do not have to consult any s-labels except
for the first characters of the traced edges. We call the traced nodes and edges ‘scanned nodes’
and ‘scanned edges’ respectively.

2. If we have created a node vj_1 in Step 4 of the previous iteration, set l' to sl(vj_1) as its
suffiz link. Note that I' is not always a node.

3. If there is already the locus of S™[j..i] under the locus of ST[j..i — 1], set j to next_j and the
locus of St[j..i] to next_locus, and this algorithm (the ith phase) is finished.

4. If there exists no node at the locus of ST[j..i — 1], create it. Let this new internal node be
vj. If there are implicit suffiz links that point to the edge split by this node insertion, correct
them.

5. Under the node at the locus of ST[j..i — 1], create a new leaf for the locus of St[j..i]. The
s-label of this newly added edge is represented by only the first index, that is 1.

6. Let w be the parent node of the locus of S*[j..i —1]. Set j+1 to j and sl(w) to l. Goto Step
1.

Algorithm 3 (Basic s-Suffix Tree Construction Algorithm) Let T be a tree with only one
node at the root. Let i = j1 = 1, and startlocus be the root. For all ¢ from 1 to n—+1 in increasing
order, do the following.

1. Ezecute sstree_phase(i, j;, start_locus).

2. Let jix1 be next_j and start_locus be next_locus, both of which are set in Step 3 of Algo-
rithm 2.

In the following, we analyze the time complexity of this algorithm. In the algorithm, there are
two problems caused by the implicit suffix links. One is the analysis of the computation time for
keeping the implicit suffix links correct in Step 4 of Algorithm 2. The other is the analysis of the
number of scanned nodes in Step 1 of Algorithm 2. First, we deal with the former problem, and
after that we discuss the latter problem.

Related to the implicit suffix links, we give the following lemma.
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Lemma 4 Let u be a node with an implicit suffiz link and d = |oy|. Then the first character of
the s-label of any of the outgoing edges from u must be one of d, 0, and —d. Furthermore, if it is
d, its corresponding compl value must be 0.

Proof: Let e; and es be two of the outgoing edges from u. Let z; and zo be the loci on e; and
e2 whose distances from u are 1, and corresponding s-labels be ac; and ey, respectively. (¢; is a
s-encoded character and « is a s-encoded substring.) Let o/} and o/¢), be the s-suffixes of ae; and
ace whose lengths are just 1 smaller, and let 2} and z) be the loci of o/} and &/¢,. If u has an
implicit suffix link, the two loci 2] and 2}, must be the same locus, which means that ¢ = ¢, =0,
though ¢ # ¢y as 21 and zy are different loci. It means that ¢; must be one of d, 0, and —d. If ¢; = d
and corresponding compl value is not 0, ¢; becomes non-0 value. Thus if ¢; = d, its corresponding
compl value is 0. O

We use the term ‘zero-node’ for a node with more than one outgoing edge that has an s-label
starting with either of d, 0, or —d, (which we call a ‘zero-edge’) where d is the s-label length of
the node, regardless of whether its suffix link is implicit or not. We call a zero-edge a “positive
zero-edge”, a “normal zero-edge” or a “negative zero-edge”, if the the first s-encoded character of
its s-labels is d, 0 or —d, respectively.

We next give the following two lemmas related to zero-nodes and zero-edges.

Lemma 5 A positive zero-edge cannot be an ancestor of another positive zero-edge. Similarly,
a negative zero-edge cannot be an ancestor of another negative zero-edge. There are at most |II|
normal zero-edges on a path from the root to a leaf.

Proof: The first character (parameter) of the original substring of the s-label of a positive zero-
edge e is same as the first character of the original substring of the s-label of the end node v of
e, according to the definition. Even if a descendent edge of e has an s-label such that the first
character of the original substring of the s-label of e is same as the first character of the original
substring of the s-label of v, it is also same as the first character of the original substring of the
s-label of ¢ and it cannot be a positive zero-edge.

Similarly, the first character of the original substring of the s-label of a negative zero-edge ¢’
is the complement of the first character of the original substring of the s-label of the end node v’
of €/, according to the definition. Even if the original substring of the s-label of a descendent edge
of e is the complement of the first character of the original substring of the s-label of v, it is the
character same as the first character of the original substring of the s-label of e and it cannot be
even a negative zero-edge, because its prev-encoded character is not 0.

The third proposition is more trivial. There are at most |II| Os in any s-encoded string according
to its definition. Consequently there are at most |II| normal zero-edges on a path from the root to
a leaf. O

Lemma 6 On a path from the root to a leaf, there are at most |II| + 1 zero-nodes.

Proof: There are at most |II| Os in any prev-encoded string. Thus there are at most |II| normal
or negative zero-edges on a path from the root to a leaf. There are only 1 positive zero-edge at
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most on the path according to Lemma 5. Therefore, we conclude that there are at most |II| + 1
zero-nodes on any path from the root to any leaf. O

We call a set of nodes a zero-chain if the nodes form a subpath on a path from the root to a
leaf in the tree and all the edges between them are zero-edges of the same kind (i.e., if one edge is
a normal zero-edge, then the others are also normal zero-edges, for example). Then we obtain the
following theorem related to the implicit suffix links:

Theorem 1 For any edge e, the set of nodes (including nodes that are not inserted to the suffiz
tree yet) having implicit suffix links to e forms at most 2|Il| + 1 zero-chains. Furthermore, the
length of each zero-chain is at most |II|.

Proof: Let v and v’ be two nodes with implicit suffix links to the same edge. If v is an ancestor of
v" and there is a node u between v and v', it is obvious that sl(u) is also between sl(v) and sl(v').

If neither of these two nodes is an ancestor of the other, let w be the lowest common ancestor of
v and v’ in the s-suffix tree. Note that it does not occur to the nodes in any p-suffix trees. w is not
the root, because both of the first characters of the s-labels of v and v" must be 0. Let suffix;(S)
denote S[i..|S|]. Since one of the s-encoded strings of suffixs(o,) and suffixa(o,s) must be a prefix
of the other, both of the outgoing edges of w to ancestors of v and v' must be zero-edges. Thus w
must be a zero-node.

Lemma 5 implies that, under the negative or positive zero-edge out of w, there is only one
zero-chain formed by the set of nodes having implicit suffix links to e. Furthermore, there are at
most |II| normal zero-edges on a path to a leaf from the root, according to Lemma 5. One zero-node
can have three outgoing zero-edges at most. Two of the edges can have only one such zero-chain
under each edge, and the other node have at most |II| — 1 zero-node under the edge. This means
that there are at most 2|II| + 1 such zero-chains. Also according to Lemma 5, it is obvious that the
lengths of the zero-chains are at most |II|. O

Figure 3 shows a picture of these zero-chains. According to this theorem, there are O(|II|?)
implicit suffix links to one edge, and it takes O(|II|?) time to update all the corresponding implicit
suffix links one by one when we split an edge in Step 4 of Algorithm 2. In the case of the p-suffix
tree (i.e., in case there are no complementary character pairs), such nodes form only one zero-chain,
and the number of implicit suffix links to one edge is at most |II|. Hence the update time is O(|II])
for p-suffix trees. We will improve these time complexities in the next section.

We next discuss the number of nodes scanned in the algorithm.

Theorem 2 The number of scanned edges that are not normal zero-edges is at most n.

Proof: In constructing the s-suffix tree of a string S, consider that an edge (u,v) (u = parent(v))
that is not a normal zero-edge is scanned when we search for the locus of ST[5..i] in the jth extension
of the (i + 1)th phase. Let u = node(S™[j..k]).

Suppose that there is a node w at the locus of ST[5’..k] in the j'th extension of the ¢'th phase such
that k < i’ <iand j' < j. Note that we do not perform the j”th (" > j) extension in the i'th phase
(i < 4) of the algorithm. As (u,v) is not a normal zero-edge, sencode(S™*[j' + 1.k + 1])[k — j' + 1]
cannot be 0 and therefore w has an explicit suffix link to some node. But it means that « is pointed
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by the suffix link of a scanned node in the previous extension, and u is not a scanned node. Hence
there cannot be any node like w if (u,v) is a scanned edge, and the value k is different for any
scanned node u. Accordingly, we conclude that the total number of such edges is at most n. O

According to Lemma 6, the number of normal zero-edges that are scanned in a single phase
is at most |II|. Thus the total number of nodes that have implicit suffix links and are scanned in
the algorithm is at most n|II|. We assume that the outgoing normal zero-edge from a node can be
accessed in O(1) time. Thus the total scanning time will be O(n(|II] + log |X])).

Thus we conclude that the total computing time of our basic algorithm is O(n(|TI|* + log |%])).
For p-suffix trees, this algorithm achieves O(n(|II|+1log|X|)) time. If |II| and || are constant, both
of them are O(n). In fact, in the problem of RNA/DNA structural matching (|£| = 0 and |II| = 4),
this basic algorithm is efficient enough as we will show in the experiment section. In the following
sections, we consider how to improve the computation time to O(n(log |II| + log|X])).

3.3 Faster Updating Algorithm for Implicit Suffix Links

In this section, we consider how to reduce the updating time of the implicit suffix links to O(log |I1]),
which was O(|TI|?) in the basic algorithm. By doing so, we can achieve O(n(|TI| + log |X|)) time.

For maintaining the implicit suffix links, we use a balanced tree structure called a concatenable
queue [1], or a c-queue for short, which represents a list of items sorted by the values that are given
to the items. It takes O(logm) time to insert a new item into a c-queue of size m. For any value
x, it takes O(logm) time to split a c-queue @ of size m into two c-queues @1 and Q2 so that the
items with values with larger than z are all in ()1 and the others are all in Q».

For each edge that is pointed by any implicit suffix links, we construct a c-queue which represents
a list of nodes that have an implicit suffix link to the edge sorted by the s-label lengths of the nodes.
Moreover, we use a pointer to the c-queue instead of the implicit suffix link to the edge to maintain
the implicit suffix links. We call it a g-pointer. The c-queue has a pointer to the edge instead to
enable tracing the implicit suffix links. When an edge is split, a corresponding c-queue @ is also
split to two c-queues. Let the larger one of the two be ()1 and the other be Q2. We let ()1 be the
successor of (), i.e., we let the memory address of (J; be the same as (). By doing so, we do not
have to change the g-pointers of the nodes listed in @};. For the nodes listed in Qo whose size is
smaller than the half of the size of ), we have to change the g-pointers to point at Qo.

As the number of insertions and splits are O(n) and the sizes of the c-queues are O(|I1|?), the
computation time for maintaining the c-queues is O(nlog|II|). Add to it, we need to analyze the
computation time for updating the g-pointers, for which we give the following lemma.

Lemma 7 Assume that total m nodes are inserted to a c-queue QQ or its descendant split c-queues.
The total number of updates of the g-pointers of the m nodes is at most mlogm, in which the base
of log is 2.

Proof: Assume that all the insertion operations to the c-queues are done before any of the split
operations. Notice that the number of the updates in this case is larger than or equal to the actual
number of updates. If m = 1, the number of updates is 0 and the proposition is true. Suppose
that the number of the updates is at most xlogx for any c-queue of size x such that =z < m,
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and that a c-queue @ of size m is split into two c-queues of sizes z and x +y (z > 0, y > 0,
m = 2z + y). Then the number of the updates for @ is at most xlogz + (z + y) log(z + y) + = =
xlog(2x) + (z 4+ y) log(x + y) < (2z 4+ y) log(2x + y) = mlogm. It holds for any split of ). Thus
the number of updates for @) is at most m log m. O

Therefore, the total number of the updates of g-pointers is also at most O(nlog|II|) as the
largest size of m is O(|II|?) according to Theorem 1. Hence the total time for maintaining the
implicit suffix links with the c-queues is O(nlog |II|) time, and consequently we can construct the
s-suffix tree in O(n(|II| 4 log|X])) time.

3.4 Faster Scanning Algorithm

In this section, we finally improve the algorithm to O(n(log |II| + log |X])), which is same as the
Kosaraju’s best-known algorithm [14] if it is used for p-suffix trees. A zero-chain C is called normal
if the edges in the subpath formed by C are normal zero-edges. According to Theorem 2, we only
have to care about normal zero-chains to improve the time complexity. A zero-chain C is called
maximal if C' is a zero-chain and C' U {z} is not a zero-chain for any node z. We maintain all the
normal maximal zero-chains in the tree using c-queues. Let ll(e) be the s-label length of the node
at the end of the edge e. For each normal zero-chain, we maintain a c-queue using ll(e) as the
key of edge e. This structure can be split in O(log |II|) time when a new node is inserted among
the chain, and a new zero-edge can be inserted into a chain also in O(log|II|) time, as the size of
zero-chains is O(|II]) according to Theorem 1. Furthermore, there are O(n) normal zero-chains at
most. Hence total time for maintaining them is O(n log|II]).

Consider the situation that we have just constructed a new node by splitting an edge (u,v)
(u = parent(v)) by inserting a node ¢t. In the next extension, we will scan a path from sl(u) to
sl(v) to find the locus of sl(¢). In Ukkonen’s algorithm, we do not have to maintain suffix links
of leaves, but we maintain these suffix links of leaves to know sl(v) even if v is a leaf for this
algorithm. The suffix links of leaves can be very easily maintained as the leaves are constructed
one by one from those with longer s-labels. Now let e be a zero-edge encountered in scanning from
sl(u) to sl(v). Let C be the set of zero-edges in the zero-chain which includes e. We can find the
zero-edge €' in C nearest to a leaf such that [I(¢') is not larger than the s-label length of si(t) in
O(log |I1|) time, using the above c-queue. According to [8], we can compute the lowest common
ancestor (LCA) of two nodes of a suffix tree in a constant time even while we are constructing the
tree. Thus we can find the LCA w of the edge €’ and the node sl(v) in a constant time. Then what
we have to do is to start scanning from w, because w must be sl(t) itself or an ancestor of sl(t).
Figure 4 shows the picture of this technique. For the zero-chains, we give the following theorem.

Theorem 3 The number of encountered mazimal normal zero-chains in scanning is at most n+1.

Proof: There must be at least one edge that is not a normal zero-edge between two maximal
normal zero-chains encountered in scanning, due to the definition of maximal normal zero-chains.
Moreover, the number of scanned edges that are not normal zero-edges is at most n, according to
Theorem 2. Thus we can conclude that the number of encountered normal zero-chains in scanning
is at most n 4 1. O
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Thus the total time for scanning zero-edges with this technique is O(nlog |II|), and we finally
achieved an O(n(log|II| + log|X|)) time algorithm.

4 Computational Experiments

In this section, we describe experiments on the s-suffix trees of RNA and DNA sequences, where
Y = ¢, I1 ={AU,G,C}, Ais the complement of U and G is the complement of C. (In DNA sequences,
T is present instead of U.)

We conducted experiments on three HIV (human immunodeficiency virus) RNA complete se-
quences: (A) a sequence of length 9719 (accession number: K03455), (B) a sequence of length 9748
(accession number: X01762) and (C) a sequence of length 8981 (accession number: AF067156).
We also use four DNA sequences of E. coli, each of which has the same length, 1 Mbp = 1, 000, 000
bp. The length of the full genome sequence of E. coli is about 4.64 Mbp, and these four sequences
are the following regions of the sequence: (D) 1 bp-1,000,000 bp, (E) 1,000,001 bp-2,000,000 bp
(F) 2,000,001 bp-3,000,000 bp, and (G) 3,000,001 bp—4, 000,000 bp.

First, we compare the construction time and the size of the s-suffix tree with those of the
normal suffix tree of the same sequences. Table 1 shows the construction time (in seconds) using a
PentiumIII CPU running at 2.2 GHz, and the numbers of nodes in the suffix trees and the s-suffix
trees of the seven sequences. According to the table, the construction time of the s-suffix trees is
only about 1.5 times larger than the time for the ordinary suffix trees, though we use the naive
O(n(|T1]? + log |%])) algorithm.

The s-suffix tree uses more memory space than the ordinary suffix trees for the following two
kinds of data. One is the list of implicit suffix links stored in each edge. Note that it is needed only
during the construction of the tree. For a string of size n, it requires memory of 3n words at most,
as there are at most n implicit suffix links and 2n edges in the tree. Note that it should be much
smaller in ordinary. It becomes several times larger if we maintain the implicit suffix links with
c-queues, but we do not use c-queues in the experiments. The other is the prev and compl encoded
string of the original string, which requires 2n words memory. Note that the prev and compl values
are very small integers and can be stored in 1 byte in most cases in the case of RNA strings. As the
suffix tree implementation requires 5n to 9n words (depending on implementations), our algorithm
requires less than twice memory as the suffix tree construction algorithms, if the number of the
nodes in the two trees are similar. In fact, both the number of nodes in the suffix tree and that of
the s-suffix tree are very similar and they are about 1.6 to 1.7 times the length of the sequence for
any sequences, according to the experiments in Table 1. More precisely, the numbers of nodes in
the s-suffix trees are slightly smaller than those of the normal suffix trees in all cases.

We also give the experimental results of an experiment to find maximal structural patterns
which are longer than [ and repeated more than r times for some given [ and r. Table 2 shows two
examples of maximal structural patterns found in E. coli sequence (D): (1) is a set of patterns of
length 15 that s-appears four times, and (2) is a set of patterns of length 19 that s-appears 2 times
in the sequence. Every sequence is different from the others, but these sequences s-match with each
other. Table 3 shows the number of maximal patterns whose lengths (I’s) are larger than some given
length. In the table, a “normal pattern” means an ordinary string pattern that can be found with
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an ordinary suffix tree. Notice that the structural patterns include the normal patterns. According
to the table, the proportion of normal patterns increases with the lengths of the patterns, which
means that there are much more ordinary long patterns than the structural long patterns. But
we succeeded in finding many structural patterns, and we think they may include some interesting
patterns.

5 Concluding Remarks

We have proposed a new data structure called the structural suffix tree, or s-suffix tree for short. We
also proposed an on-line O(n(log |X|+1log |I1])) algorithm for constructing it, where ¥ is an alphabet
of fixed symbols and II is an alphabet of parameters. This data structure enables an efficient
search for frequent patterns of structures of RNA sequences or single-stranded DNA sequences. It
also enables a common structure pattern to be efficiently found in more than one sequence. We
also showed the practicality of our data structure and our algorithm by reporting computational
experiments for finding structural patterns from RNA sequences of HIV and DNA sequences of E.
coli.

Several tasks remain for the future. Two sequences can have the same structure even if they do
not have the same s-encoded string patterns. Furthermore, it is difficult to apply our algorithm to
the problem of proteins, where the combinations are far more complicated. Thus we should strive
to create more general data structures and algorithms for structural pattern matching of biological
sequences. Ordinary suffix trees for strings of an integer alphabet {1,...,n} can be constructed in
linear time regardless of the alphabet size [9]. It is an open problem whether or not such a linear
time algorithm exists for constructing s-suffix trees or p-suffix trees.
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Sequence 1: AUAUCGUAUGGCCGAGCC
Sequence 2: CGCGUAGCGAAUUACAUU

(1) Example sequences

complementary base pair

(2) Candidate structure

Figure 1: Examples of sequences that have high possibility to have a same structure.
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Figure 2: The structrual suffix tree of an RNA string S = “AUAUCGU”.
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Figure 3: An example of zero-chains of nodes having implicit suffix links to a same edge.
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Figure 4: Faster scanning by using the dynamic LCA technique.
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Table 1: Construction time and the number of nodes in suffix trees and s-suffix trees.

Sequence A B (© (D) (E) (F) (G)
Length 9719 9748 8981 1000000 1000000 1000000 1000000
Suffix tree Time (sec) | 0.02 0.02 0.02 2.64 2.72 2.75 2.67
e #nodes | 16135 16217 14710 1640492 1635995 1638043 1638008
Suffix tree | TIIE (SeC) | 002 002 0.02 389 3.91 3.86 3.94
STOWIXMEE | wodes | 16033 16132 14666 1631525 1628821 1630104 1628923
Table 2: Examples of maximal structural patterns.
(1) (2)
Position Sequence
646095 CCCGCTTCGGCTTCA Position Sequence
703617 GGGCGTTGCCGTTGA 371484 ACTGCGCCATGAAGATGAC
779110 TTTATGGTAATGGTC 884639 GACTATAAGCTGGTGCTGA
888469 TTTATCCTAATCCTG
Table 3: Number of structural/normal patterns.
(1) HIV RNA sequences (2) E. coli sequences
l Pattern (A) (B) (0O l Pattern (D) (E) (F) (G)
>5 Structural | 5329 5061 4887 > 10 Structural | 495371 499205 498728 497701
- Normal 1381 1147 1000 Normal 90968 85899 88681 90298
> 10 Structural | 670 451 282 > 15 Structural | 4723 4140 4466 4529
Normal 479 363 126 Normal 2402 1728 2095 2147
> 15 Structural | 336 123 4 > 90 Structural 330 106 192 192
- Normal 336 123 3 Normal 330 103 192 190
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