Geometric Suffix Tree: A New Index Structure
for Protein 3-D Structures

Tetsuo Shibuya

Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
tshibuya@hgc. jp

Abstract. Protein structure analysis is one of the most important re-
search issues in the post-genomic era, and faster and more accurate query
data structures for such 3-D structures are highly desired for research on
proteins. This paper proposes a new data structure for indexing protein
3-D structures. For strings, there are many efficient indexing structures
such as suffix trees, but it has been considered very difficult to design such
sophisticated data structures against 3-D structures like proteins. Our in-
dex structure is based on the suffix trees and is called the geometric suffix
tree. By using the geometric suffix tree for a set of protein structures, we
can search for all of their substructures whose RMSDs (root mean square
deviations) or URMSDs (unit-vector root mean square deviations) to a
given query 3-D structure are not larger than a given bound. Though
there are O(N?) substructures, our data structure requires only O(N)
space where N is the sum of lengths of the set of proteins. We propose
an O(N?) construction algorithm for it, while a naive algorithm would
require O(N 3) time to construct it. Moreover we propose an efficient
search algorithm. We also show computational experiments to demon-
strate the practicality of our data structure. The experiments show that
the construction time of the geometric suffix tree is practically almost
linear to the size of the database, when applied to a protein structure
database.

1 Introduction

Analyzing 3-D structures of proteins is very important in molecular biology and
more and more protein structures are solved today with the aid of state-of-the-
art technologies such as nuclear magnetic resonance (NMR) techniques, as seen
in the increasing number of PDB [4] entries: 35,813 on March 28, 2006. It is said
that structurally similar proteins tend to have similar functions even if their
amino acid sequences are not similar to each other. Thus it is very important to
find proteins with similar structures (even in part) from the growing database
to analyze protein functions.

Structure similarity search methods for protein structure databases can be
classified into two types. One is by comparing each database entry with the
query. There are many comparison algorithms for protein structures [10], and
the results could be very accurate, but it will require enormous amount of time

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 84-33] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 85

to apply against very large databases. The other approach is by indexing with
some important features of structures [I],[3,[6L5,[8,[12]. In ordinary, these meth-
ods can search queries more efficiently, but with less accuracy than the pair-
wise comparison-based methods. The accuracy of comparison of two protein
structures is often measured by RMSD (root mean square deviation) [219}[17]
or sometimes by URSMD (unit-vector root mean square deviation) [7L[15]; see
section 2.1 for more details. But it has been considered too difficult to design
indexing structures that strictly consider the RMSD or the URMSD.

In this paper, we propose a new data structure called the geometric suffix
tree that succeeds in finding all the substructures whose RMSD or URMSD to
a query is not larger than some given bound. As the name implies, our data
structure is very similar to the famous suffix tree for character strings: The
edges in the ordinary suffix tree represent substrings of texts, while the edges in
the geometric suffix tree represent 3-D substructures of protein 3-D structures.
The geometric suffix tree can be stored in O(N) space where N is the sum of
the lengths of the proteins in the database. We propose an O(IN?) construction
algorithm for it, though it takes O(N?®) time if we construct the data structure
naively. Furthermore, the experiments will show that the construction time of
the geometric suffix tree is almost linear to the size of the database in practice,
when applied to a protein structure database. Moreover, we propose an efficient
search algorithm for substructure queries. This data structure is also useful for
finding structural motifs, clustering substructures, and so on.

Organization of this paper is as follows. In section 2 we explain related work
as preliminaries. In section [3, we describe definitions of two data structures:
the geometric trie and the geometric suffix tree, where the geometric trie is the
basis for the geometric suffix tree. In sections [and [5, we explain algorithms for
constructing the data structure and algorithms for searching queries. In section [,
we demonstrate experimental results. In section [7 we conclude our results.

2 Related Work

2.1 RMSD and URMSD

A protein is a chain of amino acids. Each amino acid has one unique carbon atom
named C,, and we often use the coordinates of the C, atom as the representative
position of the amino acid. The set of C', atom positions of all the amino acids in
a protein is called the backbone of the protein, and is often used to ease protein
structure analysis in previous work. The backbone is topologically linear, but it
forms a geometrically very complex structure in the 3-D space. In this paper, we
consider the backbone as the target to index.

The most popular and basic measure to determine geometric similarity be-
tween two sets of points like the positions of backbone atoms is the RMSD
(root mean square deviation) [2,[9,[17], if we know which atom in one structure
corresponds to which atom in the other. The measure describes the similarity
of two structures when one of the point sets is rotated and translated reason-
ably. Let the two sets of points to be compared be P = {p1,p2,...,pn} and

86 T. Shibuya

Q =1{q1.92,...,49,}, where p; and g, are coordinates in the 3-D space, and we
consider p; corresponds to g; for each i. The RMSD is the minimum value of
{20, Ilpi — (R qi +v)||?)/n}!/? over possible rotation matrices R and trans-
lation vectors v, where || - || denotes the norm. Let R(P,Q) and #(P,Q) be R
and v that minimizes the value. We call 7 |p; — (R(P,Q) - q; + %(P,Q))]?
the MSSD (minimum sum squared distance) of P and Q.

It is known that #(P,Q) = Y., (pi — R(P,Q) - q;)/n, i.e., the distance is
minimized when the centroids of the two point sets are translated to the same
point. Hence, if both of the point sets are translated so that their centroids
are located at the origin of the coordinates, the RMSD/MSSD problem is re-
duced to a problem of finding R that minimizes f(R) = >, [[pi — R - q;||*.
We can find R(P,Q) in linear time by using singular value decomposition
(SVD) [2,[17] as follows. Let H = """ | p; - g%. Then f(R) can be described as
S (Pipi+ qlqi)—trace(R-H), and trace(RH) is maximized when R = VU7,
where UAV is the SVD of H. Hence R(P,Q) can be obtained in constant time
from H (see [13] for SVD algorithms). Note that there are rare degenerate
cases where det(VUT) = —1, which means that VU is a reflection matrix.
We ignore the degenerate cases in this paper. In this way, we can compute the
RMSD/MSSD values in O(n) time.

The URMSD (unit-vector root mean square deviation) [7,[15] is a variation of
the RMSD. The RMSD is sometimes influenced badly by very distant pairs of
points, and the URMSD is designed to avoid such influence. It is the minimum
value of {(X""||p; — R- q}||?)/(n — 1)}/2 over possible rotation matrices R,
where p; = (pi+1 — pi)/I|Pi+1 — pil and q; = (gi+1 — @i)/|l@i+1 — qil|- Let
R(P,Q) be R that minimizes the value. We call 22:11 P — R(P,Q) - q}||? the
UMSSD (unit-vector minimum sum squared distance). The URMSD/UMSSD
can be computed with the same strategy in O(n) time, i.e., by computing the
SVD of H' = 371, p} - (a7)".

2.2 Suffix Trees

The suffix tree [TTL14,16,19.20] of a string S € X™ is the compacted trie of
all the suffixes of ST = S$ where $ is a character such that $ ¢ X. This data
structure can be stored in O(n) space and moreover is known to be buildable
in O(n) time. Each leaf represents a suffix of the string ST, and each node
represents some substring. This data structure is very useful for various problems
in sequence pattern matching. Using it, we can query a substring of length m in
O(m) time, we can find frequently appearing substrings in a given sequence in
linear time, we can find a common substring of many sequences in linear time,
and so on [14].

Not much work has been done for applying this data structure to biomolecular
structures. The PSIST [I2] is the only index data structure for protein structures
based on the suffix trees as far as we know. It converts local features of the amino
acid chain (i.e., some feature vectors computed from only several adjacent atoms)
into some alphabets and constructs suffix trees over the converted alphabet se-
quences, without considering global similarity measures like the RMSD or the

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 87

URMSD at all. For RNA (secondary) structures, the s-suffix tree [I8], a general-
ization of the suffix tree, can be used for mining some interesting RNA structures
from sequence databases, but it cannot be applied to protein 3-D structures.

3 Geometric Suffix Tree Data Structure

In this section, we describe the definition of the geometric suffix tree. Before
defining the geometric suffix tree, we define a data structure called the geometric
trie for a set of protein structures.

Consider a set of n protein structures represented by the sequence of their C,,
atom coordinates. Let W; be the i-th structure, where the 3-D coordinates of the

j-th C, atom is denoted as 'w;-l), and let ¢; be the length of W; (i.e., number of
C,, atoms). Let W;[j..k] denote {wgz), wgﬁl, e ,w,(;)}, which means a structure
formed by the (k —j+ 1) atoms from the j-th atom to the k-th atom in W;. We
call it a substructure of W;. Moreover, we call W;[1..j] a prefix substructure of
W;. Conversely, W;[j..4;] is called a suffix substructure. From now on, we define
two versions of the geometric trie: one based on the RMSD/MSSD (which we call
the RMSD Geometric trie (RGT)) and the other based on the URMSD/UMSSD
(which we call the URMSD geometric trie (UGT)). The geometric trie for the set
of protein structures is defined as a rooted tree data structure that has following
features:

1. All the internal nodes (nodes other than the leaves) except for the root have
more than one child, while the root has only one child. (It corresponds to
the fact that a structure with only one atom is always the same structure.)
The trie has n leaves, each of which corresponds to one protein structure,
and no two leaves correspond to the same structure. Let leaf (i) denote the
leaf that corresponds to W;.

2. All the internal edges (i.e., edges that end at internal nodes) and some
external edges (i.e., edges that end at leaves) correspond to a substructure of
some protein. If the corresponding substructure of edge e is P(e) = W;[j..k],
we represent it with only three values: i, j, and length(e) = k — j + 1. Let
length(e) = 0 if e is an external edge without a corresponding substructure.
We call the value length(e) the edge length of e. Let the depth(v) be the
sum of all the edge lengths on the path from the root to v, which we call the
depth of v.

3. Add to the three values that represent its corresponding substructure, each
edge with a corresponding substructure has information of a rotation matrix
R(e) and a translation vector v(e). R(e) and v(e) must satisfy the condition
in the items 4 and 5.

4. Let S(e) be a 3-D structure obtained by rotating P(e) with R(e) and trans-
lating it with v(e) after that. We call S(e) the ‘edge structure’ of e. Note
that S(e) (not P(e)) corresponds to the substring represented by an edge in
an ordinary suffix tree for alphabet strings. The ‘node structure’ S(z) for a
node x is defined as a structure that can be obtained by concatenating ‘edge

88 T. Shibuya

structures’ of the edges on the path from the root to the node z. For any
leaf v = leaf(i) and its node structure S(v), the MSSD (in case of RGTs, or
the UMSSD in case of UGTS) between any prefix substructure of S(v) and
the prefix substructure of W; of the same length must not be larger than
some given fixed bound b. (Note that b is unrelated to the RMSD/URMSD
bound d used in the next section for searching structures.)

5. For an edge e = (v,w) with some corresponding substructure P(e), the
‘branching structure’ str(e) is defined as a structure that is obtained by
adding the coordinates of the first atom of S(e) (i.e., S(e)[1]) after the
coordinates sequence S(v). For any internal node v with more than one
outgoing edge with corresponding substructures, the MSSD (for RGTs, or
the UMSSD for UGTSs) between str(e;) and str(ez) must be larger than b,
where e; and e are arbitrary two of the edges.

Fig. 1. A geometric trie for two protein 3-D structures

As there are only O(n) nodes/edges in the trie and we need only O(1) mem-
ory for each edge/node, the total memory space to store the geometric trie is
only O(n). Note that the data structure is not unique for a fixed set of protein
structures. Figure [Il shows an example of the geometric trie constructed for two
structures P and Q. In the figure, we consider the MSSD of P[1..7] and Q[1..7] is
not larger than b, while the MSSD between P[1..8] and Q[1..8] is larger than b.

Now we can define the geometric suffix tree: The geometric suffix tree for a set
of proteins is the geometric trie for all the suffix substructures of all the proteins
in the set. It is easy to see that we need O(N) space to store the geometric suffix
tree, where IV is the sum of the lengths of the proteins.

4 Constructing Geometric Suffix Trees

In this section, we describe how to construct the geometric tries and the geo-
metric suffix trees. Given a set of n protein structures W; and some given MSSD
(for RGTs or UMSSD for UGTSs) bound b, we can construct the geometric trie
by adding structures one by one as follows:

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 89

Algorithm 1. At first, construct a tree with only the root node. For each protein
structure W;, set the root node to v and do the following.

1. From among a set of v’s outgoing edges with some corresponding substruc-
tures, find an edge e such that the MSSD (for RGTs, or the UMSSD for
UGTSs) between W;[1..depth(v) + 1] and str(e) is smaller than b. If there
is more than one such edge, choose an arbitrary one (or preferably the one
with the smallest MSSD (or UMSSD)). If no such edge exists, go to step 2.
Otherwise go to step 3.

2. Add a new outgoing edge ¢’ = (v, w) to v, and let the new leaf w correspond
to W;. Let P(¢’) be W;[depth(v) + 1..4;]. If v is the root, let R(e’) be the
identity matrix and let v(e’) be a zero vector. Otherwise, in case of RGTs, let
R(¢') be R(S(v), Wi[1..depth(v)]), and let v(e') be &(S(v), Wi[1..depth(v)]).
In case of UGTS, let R(e/) be R(S(v), W;[1..depth(v)]), and let v(e’) be
(S(v)[depth(v)] — R(e") - W;[depth(v)]). Notice that, in both cases, R(e’) and
v(e’) represents alignment between S(v) and W;[1..depth(v)]. Then stop.

3. Let w be the node where the edge e ends. Find the longest prefix substruc-
tures of S(w) and W; whose MSSD (for RGTs, or UMSSD for UGTs) is
not larger than b, and let the length be ¢. If ¢ < depth(w) go to step 4. If
¢ = depth(w) and £ < ¢;, set w to v and go to step 1. Otherwise, add a new
outgoing edge (w,u) with no corresponding substructure, and let the new
leaf u correspond to the structure W;. Then stop.

4. Insert a new node u between v and w. Let e; = (v, u) and let ea = (u, w). Let
P(e1) be the prefix substructure of P(e) of length (¢—depth(v)), and P(e3) be
the suffix substructure of P(e) of length (depth(w)—{). Let R(e1) and R(ez)
be the same matrix as R(e), and v(e;) and v(ez) be the same vector as v(e).
Add a new outgoing edge ¢’ = (u, z) to u, and let the new leaf = correspond
to the structure W;. If £ = £;, let ¢” have no corresponding substructure.
Otherwise, let the corresponding substructure P(e) be W; [+ 1..4;]. In case
of RGTs, let R(e”) be R(S(u), W;[1..4]) and let v(e”) be &(S(u), W;[1..4]).
In case of UGTs, let R(e”) be R(S(u), W;[1..£]) and let v(e”) be (S(u)[f] —
R(e"”) - W;[€]). Then stop.

With the same algorithm, we can construct the geometric suffix tree: Just
consider that W; is the i-th suffix substructure.

Recall that it takes O(¢) time to compute the MSSD or the UMSSD (and the
rotation matrix and the translation vector related to it) between two structures
of size £. Thus, if we execute the algorithm naively, we would need O((¢; +n)-¥¢;)
time to add W; to the tree, because there are at most n branches on the path
from the root node to some leaf. Accordingly, we need O(3_7{(¢; +n)-¢;}) time
for constructing the geometric trie. It means that the above algorithm requires
O(N?3) time to construct the geometric suffix tree, where N is the sum of all the
structure lengths. From now on we present how to reduce it to O(N?).

We reduce the computation time by proposing an incremental MSSD /UMSSD
computation technique. Recall that the MSSD of two protein structures
P[1..j] and Q[l..5] can be obtained by computing the SVD of H =

90 T. Shibuya
3:1 (pi —cp) - (@i — cq)t where cp and cg are the centroids of P and Q. H
can be computed in constant time if we are given fp(j) = Y7 pi, fo(j) = >.7 qi,

and g(j) = 327 pi - @i, as H = g(j) — {fp(j) - (f(4))'}/j. Add to these values,
we need hp(j) = >.7_, pip; and hq(j) = >.7_, g'g; to compute the MSSD or
RMSD values in constant time. Notice that all of these can be computed incre-
mentally in constant time from fp(j — 1), fo(j — 1), g(j — 1), hp(j — 1), and
hg(j—1). It means that we can add the structure W; to the tree in O(¢;+n) time,
and accordingly we can construct the RGT in O(N + n?) time. In conclusion,
we can construct the RMSD-based geometric suffix tree in O(N?) time.

Similarly, we can compute the UMSSD of two protein structures P][I..j]
and Q[1..5] in constant time if we are given ¢'(j) = >.7_, p} - (q))", Wp(j) =

1 (p))'p}, and hiy(7) = Y°1_; (})'q}. We can easily see that these can also
be computed from ¢'(j — 1), hs(j — 1) and hiy(j — 1) in constant time. There-
fore we conclude that the UGTs and the URMSD-based geometric suffix trees
can be constructed in the same time bound as the RGTs and the RMSD-based
geometric suffix trees: We can construct the UGTs in O(N + n?) time, and the
URMSD-based geometric suffix trees in O(N?) time.

5 Geometric Suffix Tree Applications

There are two important features on the RMSD/MSSD (or URMSD/UMSSD)
measures. One is that the MSSD (or UMSSD) of two structures P and @ (of
the same length) is always larger than or equal to that of P’ and @', where P’
and @)’ are any same-length prefix substructures of P and @. The other is that
there is a triangle inequality ¢ < a + b where a is the RMSD (URMSD) between
P and Q, b is that between) and R, and c is that between R and P, for any
set of three structures P, @), and R of same lengths.

Using these features, all maximal substructures whose RMSD (or URMSD)
to a query Q[1..m] is within some bound d can be computed efficiently as fol-
lows. Let ‘representative structure’ mean any prefix substructure of the ‘node
structure’ of any node in the geometric suffix tree. First, we find all the maximal
representative substructures whose RMSD (or URMSD) to the query @ is within
v/b/m+d by just doing a depth-first or breadth-first search from the root, where
b is the MSSD (or UMSSD) bound used for constructing the geometric suffix
tree. Let E be the set of edges to which the collected representative substruc-
tures correspond. After that, find all the leaves that are descendants of the edges
in E. As the suffixes that correspond to the collected leaves are candidates of
the answer substructures (and there are no candidates elsewhere), check their
RMSDs (or URMSDs) one by one.

Ordinary suffix trees have tremendous number of applications in string pattern
matching [I4]. Like them, applications of the geometric suffix trees are not lim-
ited to the database search. A long representative structure whose corresponding
edge has many descendants is a repeated structure in a protein structure, which
could have some meaning. By constructing the geometric suffix tree for several
functionally-related protein structures, we could find structural motifs. We could

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 91
further use this fundamental data structure for designing more complicated com-
binatorial pattern matching algorithms on protein structures, such as structural
alignment algorithms, clustering/classification algorithms and functional predic-
tion algorithms.

6 Experimental Results

In this section, we demonstrate the performance of the geometric suffix trees
through experiments on a Sun Fire 15K super computer with 288 GB memory
and 96 UltraSPARC III Cu CPUs running at 1.2GHz. Note that we used only
one CPU for each experiment. As a data for experiments, we used a set of 228
myoglobin or myoglobin-related PDB data files containing 275 protein structures.
The total number of amino acids in the protein set is 41,719.

Table [shows the computation time for constructing the RMSD-based geo-
metric suffix trees against databases of different sizes, setting 400A2 to the MSSD
bound. In the experiment (1), we used all the 275 proteins to index. In the ex-
periments (2)-(5), we used different subsets of them. The ‘#sequence(#a.a.)’
column shows the numbers of sequences and amino acids contained in the pro-
tein sets. The ‘Time’ column shows the computation time, while the ‘GST Size’
column shows the numbers of nodes in the constructed geometric suffix trees.
According to the table, the computation time is almost linear to the size of the
databases, though the theoretical time bound is O(N?). It is reasonable as there
should be some reasonable upper bound on protein lengths.

Next, we examined the query speed on the RMSD-based geometric suffix
trees with different MSSD bounds. Table [shows the results, where ‘b = ...
denotes the MSSD bound in A2. We used two protein substructures of the same
length as queries: In experiment (a), we used as a query a substructure from

Table 1. Time for constructing the geometric suffix trees (b = 400A?)

Database #sequence (Fa.a.) |Time (sec)|GST Size
(1) Entire database 275 (41,719)| 53.15 57,241
(2) Subset A 198 (30,061)| 36.37 41778
(3) Subset B 111 (16,983)] 17.68 | 25,942
(4) Subset C 54 (8267)| 7.91 | 13,050
(5) Subset D 20 (3,069) | 2.89 4,855

Table 2. Query time (sec) on the geometric suffix trees with various MSSD bounds

Queries [|b=1|b=100|b = 400|b = 900|b = 1600|b = 2500||#found
(a) d=1.0A[1.63] 0.56 0.39 0.43 0.60 0.87 19
d =5.0A[11.70| 5.08 5.66 6.95 6.63 6.63 217
(b) d=1.0A[1.63] 0.73 0.48 0.33 0.19 0.21 0
d=50A|16.13] 7.83 | 7.93 | 8.00 7.58 7.20 0

92 T. Shibuya

the 20th amino acid to the 69th amino acid of a myoglobin’s structure obtained
from the PDB entry named 103M. In experiment (b), we used a protein that
is unrelated to myoglobins: A substructure from the 20th amino acid to the
69th amino acid of a rhodopsin’s structure obtained from the PDB entry named
1F88. In both experiments, we examined query time by setting two different
RMSD bounds: d = 1.0A and d = 5.0A. In the table, the ‘#found’ column
shows the numbers of found substructures similar to the query. According to the
experiments, the query is very fast when the RMSD bound for the query is small
in both experiments. Note that we can observe similar phenomenon on ordinary
suffix trees: It is known that the inexact matching on suffix trees is (not) efficient
when there is (not) a small edit distance limit.

7 Concluding Remarks

We proposed a new data structure called the geometric suffix tree for indexing
the protein 3-D structures. The data structure can be stored in O(N) space where
N is the database size, and we presented an O(N?) construction algorithm for it.
Moreover, we showed through experiments that we can build the data structure
in quasi-linear time in practice. We also showed that we can search for queries
very efficiently with the geometric suffix tree.

It is an open problem whether we can improve the theoretical time bound
for building the geometric suffix tree. We are now working on utilizing this data
structure for further combinatorial matching problems and machine learning
problems on protein structures. We suppose this work is just the beginning.

Acknowledgements

The author would like to thank Prof. Tatsuya Akutsu for fruitful discussions
on protein comparison algorithms. All the computational experiments in this
research were done on the Super Computer System, Human Genome Center,
Institute of Medical Science, University of Tokyo.

References

1. T. Akutsu, K. Onizuka, and M. Ishikawa. New hashing techniques and their ap-
plication to a protein database system. Proc. Hawaii Int. Conf. System Sciences
(HICSS-28), Vol. 5, pp. 197-206, 1995.

2. K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-D point
sets. IEEE Trans Pattern Anal. Machine Intell., Vol. 9, pp. 698-700, 1987.

3. Z. Aung, W. Fu and K. Tan. An efficient index-based protein structure database
searching method. Proc. Intl. Conf. on Database Systems for Advanced Applica-
tions, pp. 311-318, 2003.

4. H. M. Berman, J. Westbrook, Z. Feng, et al. The protein data bank. Nucl. Acids
Res., Vol. 28, pp. 235-242, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 93

. O. Camoglu, T. Kahveci and A. Singh. Towards index-based similarity search for

protein structure databases. IEEE Computer Society Bioinformatics Conference,
pp. 148-158, 2003.

. T. Can and Y. Wang. CTSS: a robust and efficient method for protein structure

alignment based on local geometrical and biological features. IEEE Computer So-
ciety Bioinformatics Conference, pp. 169-179, 2003.

. L. P. Chew, D. Huttenlocher, K. Kedem and J. Kleinberg. Fast detection of common

geometric substructure in proteins. J. Comput. Biol., Vol. 6, No. 3, pp. 313-325,
1999.

. I. Choi, J. Kwon and S. Kim. Local feature frequency profile: A method to measure

structural similarity in proteins. Proc. Natl. Acad. Sci., Vol. 101, No. 11, pp. 3797-
3802, 2004.

. D. W. Eggert, A. Lorusso and R. B. Fisher. Estimating 3-D rigid body transforma-

tions: a comparison of four major algorithms. Machine Vision and Applications,
Vol. 9, pp. 272-290, 1997.

I. Eidhammer, I. Jonassen, and W. R. Taylor. Structure Comparison and Structure
Patterns. J. Computational Biology, Vol. 7, No. 5, pp. 685-716, 2000.

M. Farach. Optimal suffix tree construction with large alphabets. Proc. 38th IEEE
Symp. Foundations of Computer Science, pp. 137-143, 1997.

F. Gao and M. J. Zaki. PSIST: Indexing Protein Structures using Suffix Trees.
Proc. IEEE Computational Systems Bioinformatics Conference (CSB), pp. 212-
222, 2005.

G. H. Golub and C. F. Van Loan. Matrix Computation. 3rd eds., John Hopkins
University Press, 1996.

D. Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology, Cambridge University Press, 1997.

K. Kedem, P. Chew and R. Elber. Unit-vector RMS (URMS) as a tool to analyze
molecular dynamics trajectories. Proteins: Struct. Funct. Genet., Vol. 38, pp. 1-12,
1999.

E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM.,
Vol. 23, pp. 262-272, 1976.

J. T. Schwartz and M. Sharir. Identification of partially obscured objects in two
and three dimensions by matching noisy characteristic curves. Intl. J. of Robotics
Res., Vol. 6, pp. 29-44, 1987.

T. Shibuya. Generalization of a suffix tree for RNA structural pattern matching.
Algorithmica, Vol. 39, No. 1, pp. 1-19, 2004.

E. Ukkonen. On-line construction of suffix-trees. Algorithmica, Vol. 14, pp. 249-260,
1995.

P. Weiner. Linear pattern matching algorithms. Proc. 14th Symposium on Switch-
ing and Automata Theory, pp. 1-11, 1973.

	Introduction
	Related Work
	RMSD and URMSD
	Suffix Trees

	Geometric Suffix Tree Data Structure
	Constructing Geometric Suffix Trees
	Geometric Suffix Tree Applications
	Experimental Results
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

