Match Chaining Algorithms for cDNA Mapping

Tetsuo Shibuya! and Igor Kurochkin?

1 IBM Tokyo Research Laboratory, 1623-14, Shimo-tsuruma, Yamato, Kanagawa,
242-8502, Japan.
tshibuya@jp.ibm.com
2 RIKEN Genomic Sciences Center,
1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
igork@gsc.riken.go. jp

Abstract. We propose a new algorithm called the MCCM (Match
Chaining-based cDNA Mapping) algorithm that allows mapping cDNAs
to the genomes efficiently and accurately, utilizing local matches called
MUMs (maximal unique matches) or MRMs (maximal rare matches)
obtained with suffix trees. From the MUMs (or MRMSs), our algorithm
selects appropriate matches which are related to the cDNA mapping. We
call the selection the match chaining problem. Several O(k log k)-time al-
gorithms are known where k is the number of the input matches, but they
do not permit overlaps of the matches. We propose a new O(k log k)-time
algorithm for the problem with provision for overlaps. Previously, only
an O(k?)-time algorithm existed. Furthermore, we also incorporate a re-
striction on the distances between matches for accurate cDNA mapping.
We examine the performance of our algorithm through computational
experiments using sequences of the FANTOM mouse cDNA database
and the mouse genome. According to the experiments, the MCCM algo-
rithm is not only very fast, but also very accurate: We achieved > 95%
specificity and > 97% sensitivity at the same time against the mapping
results of the FANTOM annotators.

1 Introduction

Since the complete and accurate human genome sequence has just been released,
the interpretation and analysis of this large dataset has become a major task
for the scientific community. One of the most fundamental analyses of a genome
sequence is mapping a large number of cDNAs (mRNAs) or ESTs (expression
sequence tags) to the regions of the genome they are transcribed from. Fig-
ure [illustrates the mapping. Precise mapping allows further analysis of the
gene regulatory elements (promoters, transcription factor binding sites, etc.) to
be performed. It also provides a basis for understanding how genomes evolve.
However, the large size of the mammalian genomes, the existence of splice sites,
and the numerous repetitive regions pose a serious problem for the alignment
between cDNA and genome sequences. Alignments taking into account splice
sites are called spliced alignments. Several spliced alignment algorithms based
on O(nm)-time dynamic programming (DP) (where n and m are the lengths of

G. Benson and R. Page (Eds.): WABI 2003, LNBI 2812, pp. 462-E75] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Match Chaining Algorithms for cDNA Mapping 463

exon intron exon intron exon intron exon
[[I [I [I
Genome
mapping
EST/cDNA [[I I]

Fig. 1. Mapping a cDNA to the genome.

the two sequences to align) have been developed [11/18]21]. However, in practice,
their time bound is too large for aligning large numbers of cDNAs to genome se-
quences of enormous size. Several other algorithms that heuristically map cDNAs
to the genome have been proposed recently. These include sim4 [10], BLAT [14],
and Squall [20], which are based on a hash or hash-like tools like BLAST [2].

Suffix trees [9I2/T7122]24] are known to be very powerful and flexible data
structures for pattern matching. For example, exactly matching substrings can
be found very efficiently using suffix trees, while an ordinary hash structure can
deal with only fixed-length matches. Suffix trees require memory space that is
several times larger than many of the other indexing structures, but the memory
cost is going down at a remarkable rate these days and is becoming a less serious
problem. Consequently many bioinformatics tools use suffix trees. For example,
MUMmer [6l[7] uses suffix trees for computing alignments of bacteria-size long
sequences. They at first enumerate short exact matches called MUMs (Maximal
Unique Matches) and align the sequences by chaining some of the MUMs. In this
paper, we propose a new match chaining algorithm with better time complexity,
and we also extend the strategy of the MUMmer to make it more suitable for
c¢DNA mapping. We call the new algorithm the MCCM (Match Chaining-based
c¢DNA Mapping) algorithm.

2 Algorithms

2.1 Preliminaries

We describe in this section several basic algorithms and data structures that will
be used to describe our MCCM algorithm.

Suffix Trees The suffix tree [QT2[T7122/24] of a string S € X™ is the compacted
trie of all the suffixes of ST = S$ where $ is a character such that $ ¢ X. This
data structure is known to be buildable in O(n) time. Figure[shows an example
of this data structure. Each leaf represents a suffix of the string ST, and each
node represents some substring. This data structure is very useful for various
problems in sequence pattern matching. Using it, we can query a substring of
length m in O(m) time, we can find frequently appearing substrings in a given
sequence in linear time, we can find a common substring of many sequences in
linear time, and so on [I2]. The list of leaves corresponds to a data structure
called the suffix array [I6] that is a list of the indices of the lexicographically

464 T. Shibuya and I. Kurochkin

~ All of the suffixes =,
mississippi$
ississippi$
ssissippi$
sissippi$

issippi$

ssippi$ |::>

sippi$

ippi$

ppi$

pi$

ssippi$

Fig. 2. The suffix tree of a string ‘mississippi’.

sorted suffixes. Note that the suffix array is also a very useful data structure
that can be an alternative to the suffix tree for many purposes, especially when
memory is limited.

Maximal Rare Matching We can easily find the longest prefix of a query
string that matches somewhere in a given text sequence in a time linear to the
query size if we have the suffix tree of the text sequence. Moreover, with the
suffix tree, we can also find all the longest prefixes of all of the suffixes of the
query string that matches somewhere in a given text sequence in the same time
bound [7JT2]. This is done by tracing the nodes of the suffix tree that correspond
to the suffixes using suffix links. Note that a suffix link is a pointer from a suffix
tree’s node that represents some substring T to another node that represents
the suffix of T" which is shorter than T" by 1.

A ‘maximal matching substring’ of two sequences (a pattern and a text) is
an exactly matching substring that occurs in a text sequence r times, but any
other string that includes the substring appears less than r times in the text.
The MUMmer [6/7] uses to compute the list of what they call MUMs (Maximal
Unique Matching substrings), which is a list of the maximal matching substrings
where r = 1. Using the algorithm above, we can compute all the MUMs in linear
time relative to the query size if we already have the suffix tree of the text [7/T2].
We will use them for cDNA mapping, considering the cDNA sequences to be
pattern sequences and the genome sequence to be a text sequence.

If the genomic sequences contain many repetitive substrings, there can be
cases that corresponding matching substrings are not ‘unique’, and it could be
better to use a larger value of r. We call a maximal matching substring a maximal
rare matching, or an MRM for short, if » <[for some fixed [. All the MRMs for
some [can be easily computed with suffix trees in O(l - m) time where m is the
length of the query sequences, by using a minor extension of the above MUM
algorithm. But in the case of the FANTOM c¢cDNAs and the mouse genome, we
do not need to use large [s according to our experiments.

Match Chaining Problem If we select appropriate matches from the large
MUM or MRM list, we can build a sort of an alignment of the two se-

Match Chaining Algorithms for cDNA Mapping 465

quences [6l13[19]. We call this the match chaining problem. To form an actual
alignment, we must postprocess these selected matches, but we do not consider
this in this paper. Let M = {mq,ma,...,my} be a list of input matches sorted
by their start positions in the pattern sequence. Note that the MUM or MRM
results are already sorted in this order if we use typical algorithms based on
suffix trees. Let match m;’s start positions in the pattern sequence and in the
text sequence be p; and t; respectively, and its length be I;. An M’s subset
{me,,mey, ..., me, } is called a match chain of M if p., < p.; and t., < t., for
any 4 and j such that i < j. A match m; is said to have an overlap with a match
m; on the pattern sequence, if the two regions [p;, p; +1; — 1] and [p;, p; +1; — 1]
overlap with each other. Similarly, a match m; is said to have an overlap with a
match m; on the text sequence, if the two regions [¢;,¢;+1; —1] and [¢;,¢t;+1; —1]
overlap with each other.

The match chaining problem is a problem to find a match chain that repre-
sents an appropriate alignment of the two sequences, and is defined as follows,
letting score(C) be some measure for the ‘goodness’ of a chain C, which we will
discuss later.

Problem 1. Find the match chain C = {m,,me,,...,m¢,} with the largest
score() value among all the possible match chains.

There can be several strategies of defining score() values. The simplest mea-
sure is the number of matches, i.e., score(C) = f. In this case, the best chain
is known to be obtained in O(klogk) time using the longest increasing subse-
quence (LIS) algorithm [7J12]. We can also use as the score() values the to-
tal lengths of the match chains instead of just the number of matches, i.e.,
score(C) = Yi<i<fle,. If we do not permit the overlaps of the adjacent matches
of the chain, it can also be computed in the same time bound O(k log k) using a
tree structure called a range tree [BI9]. Let C; be the chain that has the largest
score() value among the match chains that ends with m;, and prev(m;) be the
match previous to m; in the chain C;. Most previous algorithms for this problem
can be described in the following form.

Algorithm 1 (Basic Match Chaining Algorithm,).

1. For all ¢ from 1 to k in this order, do the following.
— Find prev(m;) for m;.
2. Select the match chain with the largest score() value among the match chains
obtained in step 1 for all the matches. The actual match chain is constructed
by tracing prev() entries.

If prev(m) can be obtained in O(g(k))-time in step 1 for a match m, the total
computation time is O(k - g(k)) time, as step 2 can be done in linear time.
However, no algorithm has been known to exist that considers overlaps and
runs in O(klogk) time. Let pattern_overlap(m;,m;) = max{0,p; + l; — p;}.
When p; < p; and p; + 1; < pj + [;, this represents the actual over-
lap length of the two matches on the pattern sequence. Similarly, we let
text_overlap(m;,m;) = max{0,t, + I; — t;} and overlaplength(m;, m;) =

466 T. Shibuya and I. Kurochkin

max{text_overlap(m;, m;), pattern_overlap(m;, m;)}. Then the total length
of a match chain {mc,,Mc,,...,mc;} is described as 37, ¢l
Zl§i<f overlap_length(me,, me,,,) if we consider overlaps. In this paper, we
use this value as the score() measure. The MUMmer uses the same measure,
but their algorithm requires O(k?) time, which is inefficient for large k’s. We
will improve this bound later.

2.2 Dynamic Range Maximum Query

In this section, we deal with yet another problem, the range maximum query
(RMQ) problem [4], which plays an important role in our match chaining algo-
rithm. Given a length n array A of numbers, the RMQ problem is the problem of
finding the index of the maximum value in the subarray Afi ... j] for any query
of i and j. For a static array, we can find the index in a constant time with
linear-time preprocessing [4]. We consider the dynamic version of this problem
as follows.

Problem 2 (Dynamic RMQ). Let S be a set of items that is a null set ¢ at first.
Items that are not known in advance are inserted to or deleted from S one by
one. An item I has two given values a(I) and b(I), and the problem is to find
the item with the maximum b value among the items I € S whose a value is
within the range [p, ¢] for any query of p and ¢ at any time.

We present a dynamic RMQ algorithm which allows O(log k) query time
with O(log k) update time for both insertions and deletions, where & is the size
of S at the time of the query or the update. In our dynamic RMQ algorithm,
we maintain a queue of items sorted by the a values. Such queues are often
implemented with balanced binary tree data structures. The height of a balanced
tree data structure is always O(log k), where k is the current number of nodes or
the current queue length. For any node v in these balanced trees, the left child
of a node v always has a key (the a value in this case) that is no larger than the
key of v, while the right child of v always has a key that is no smaller than the
key of v. We use the AVL tree [3] for this purpose. The details of the AVL tree
are described in many textbooks such as [I]. The AVL tree can maintain such a
queue implicitly with the update (insertion and deletion) time of O(log k). Each
node of the AVL tree corresponds to an item and the in-order traversal of the
tree corresponds to the sorted list of the items. Each item can be accessed in
O(log k) time using its a value as its key.

In our dynamic RMQ algorithm, we maintain a pointer from each node v
to the item with the maximum b value among the items whose corresponding
nodes are in the subtree under v (including v). We call this a max pointer. We
show that maintenance of the max pointers for insertion and deletion of an item
can also be done in O(log k) time as follows. The update procedure of the AVL
tree consists of five procedures: position lookup, leaf deletion, leaf addition, node
replacement, and a procedure called rotation, each of which can be done in a
constant time except for the lookup procedure. The lookup procedure finds the
node position to add, delete or replace, and it can be done in O(log k) time. This

Match Chaining Algorithms for cDNA Mapping 467

rotation

Fig. 3. The rotation procedure for the AVL tree.

procedure does not change the data structure, so we do not have to change any of
the max pointers related to the lookup procedure. The next three procedures are
executed at most once for an update, while the rotation procedure is executed
O(log k) times. If we add or delete a leaf, or replace a node, we must also update
the max pointers of the ancestors of the updated node. As the number of the
ancestors is O(log k), we can do it in O(log k) time. Figure B shows the rotation
procedure. Notice that the max pointers of nodes except for nodes vy and vy in
the figure do not change at all. Furthermore, the new max pointers for the two
nodes can be obtained in a constant time using the max pointers of the root
nodes of the subtrees T3, T, and T3. Consequently, we need only a constant
time for one rotation procedure to maintain the max pointers. In this way, we
can maintain the max pointers in O(log k) time for each update.

We can compute the dynamic RMQ in O(log k) time using this data structure
as follows. Using the AVL tree, we can easily find the item with the smallest a
value that is not smaller than p in O(log k) time. Let the item be ;.4 and the
corresponding node be v;.f;. Similarly, we can also find the item with the largest
a value that is not larger than ¢ in the same time bound O(log k). Let the item
be I,;gnt and the corresponding node be v,;gn:. By checking the max pointers
of the children of the nodes on the path from vicr: to vrign: as follows, we can
find the item with the maximum b value among the items whose a value is not
smaller than p and not larger than ¢q. Let v;., be the lowest common ancestor
of the two nodes vicf: and vpight. A constant-time query for the lowest common
ancestor is possible with linear-time preprocessing [4], but we do not have to use
the algorithm, as it can be easily computed in a time linear to the size of the
path from vt t0 Vrighe, that is O(log k). For each node v on the path P from
Vleft t0 Vicq including viep¢ but not including vicq, we check the item pointed to
by the max pointer of the right child of v and also the item of node v, if the
right child of v is not on the path P. Similarly, for each node v on the path
P’ from vright t0 Uicq including vyigr: but not including vjeq, we check the item
pointed to by the max pointer of the left child of v and also the item of node v,
if the left child of v is not on the path P’. Add to these, we check the item of
Viea- Then we choose the item with the maximum b value among these checked

468 T. Shibuya and I. Kurochkin

items, which is the answer to the query. Since the path length is O(log k), we
can find the desired item in O(logk) time. Note that this algorithm can use a
set of multiple keys as a b value that will be compared lexicographically.

2.3 Match Chaining Algorithms

Let us set out several definitions before describing our MCCM algorithm. Let
R be a dynamic RMQ data structure as described in the previous section. Let
insert(R,I,ar,br) be a function that inserts an item I whose a value is a; and
whose b value is by into R. Let delete(R,I) be a function that deletes the item
I from R. Let rmg(R,p,q) be a function that returns the item that has the
maximum b value among the items in R such that p < a < ¢. If such an item
does not exist, it returns nil. Each function can be executed in O(log k) time,
where k is the number of current items in R.

Maximum Inter-match Region Length The genome sequence has many
repetitive regions, and copies of a gene subset can be seen in the genome. As a
result, an ordinary match chaining algorithm described in the preliminary section
often chains matches that are too far away from each other (several hundred
millions bp apart in some cases). This can be avoided easily if we set a maximum
inter-match region length and we do not permit chaining matches whose distance
in the text sequence is larger than that. It can easily be incorporated without
increasing the time complexity by using the following algorithm. Note that this
algorithm does not permit overlaps of the matches. Let max_len be the maximum
inter-match region length.

Algorithm 2 (Match Chaining Algorithm with Mazimum Inter-match Region
Length).

1. Let R be an empty dynamic RMQ data structure.
2. For all ¢ from 1 to k in order, do the following.

(a) For all matches m; such that j < i, p; +1; < p; and m; ¢ R, execute
the function insert(R, m;,t; +1; — 1, score(m;)). Note that score(m;)
is described in the next step.

(b) Let prev(m;) = rmq(R,t; — maz_len — 1,t; — 1). If prev(m;) = nil, let
score(m;) = ;. Otherwise let score(m;) = score(prev(m;)) + 1.

3. Find the match m with the largest value of score(m), and construct a chain
from m by tracing back the prev() information.

This algorithm runs in O(klogk) time in total, as insert() and rmq() routines
are executed k times at most.

Incorporating Overlaps We next incorporate overlaps without increasing the
time complexity, as maximal matching substrings often overlap with each other.
Our problem is to find the match chain with the largest total length considering
overlaps. The MUMmer uses the same metric, but their algorithm requires O(k?)
time. We break this barrier by proposing an O(k log k) algorithm. Moreover, at

Match Chaining Algorithms for cDNA Mapping 469

text sequence

(c)

\ \
(d)

\ N
(b1) N match mi
(b2)

(a)

pattern sequence

Fig. 4. Types of overlapping matches.

the same time, we use the restriction of the maximum inter-match region as
stated above.

In our algorithm, we classify the match candidates for prev(m;) into 4
groups as follows. (a) A match that does not have an overlap with m;. (b)
A match m; that has an overlap with m; on the pattern sequence and satis-
fies pattern_overlap(m;,m;) > text_overlap(mj,m;). (c) A match that has an
overlap on the text sequence but not on the pattern sequence. (d) A match m;
that has overlaps with m; both on the pattern and on the text and satisfies
pattern_overlap(m;, m;) < text_overlap(mj,m;). Figure @ shows these match
types graphically. In the figure, Type (b) is divided into the following two sub-
types: (b1) A match of Type (b) that has no overlap with m; on the text se-
quence. (b2) A match of Type (b) that also has an overlap with m; on the text
sequence. Note that we have to consider only the case (a) if we do not permit
overlaps.

Our algorithm finds the best match candidates among the matches of Type
(a), among those of Types (b), among those of Type (c¢), and among those of
Type (d) separately, each of which is computed in O(log k) time. After that, it
determines the actual best match from the four candidates. As for the matches
of Type (a), we do not have to consider about any overlaps, so it is easy to deal
with them with the dynamic RMQ data structure. To compute scores for the
matches of Type (b), we must take the overlap lengths on the pattern sequence
into account. Thus we construct a dynamic RMQ data structure based on the
scores minus the pattern positions instead of the scores. As for those of Types
(c) and (d), we must concisder the overlap lengths on the text sequence. Thus we
use the scores minus the text positions instead of the scores as the measure. For
the matches of Type (c), we use a different data structure for queuing and two
functions for it, insert_queue() and find_best(), which we will describe later.
Letting t(m) denote the start position of a match m (i.e. t; for m;), our match
chaining algorithm is described as follows. In the algorithm, R;, Re, R3, and @
maintain the data for querying matches of types (a), (b), (d), and (c¢) respectively.

470 T. Shibuya and I. Kurochkin

Algorithm 3 (Algorithm for Match Chaining with Overlaps).
1. Let Ry, Ry and R3 be empty dynamic RM(Q data structures, and @) be an
empty queue represented by a balanced tree data structure.
2. For all ¢ from 1 to k in order, do the following.

(a) For all matches m; such that j < ¢, p; +1; < p; and m; ¢ R, do the
following.

— Execute the functions insert(Ri,m;,t; + l; — 1,score(m;)),
delete(Rz, m;), delete(R3,m;), and insert_queue(Q,mj, t;,t; +1; —
1, score(m;j) —t; — ;).

(b) Let m(® = rmq(Ry,t; — maz_len — 1,t; — 1), m® = rmq(Ra,t; — p; —
maz_len—1,t;—p;—1), m(9) = find_best(Q,t;), and m¥ = rmq(Rs, t;—
Di, t’i N 1)

(c) It m @ £ nil and t(m@D) > t;, let mD = nil.

(d) If the four candidates m(®, m®) m(?) and m® are all nil, let prev(m;)
be nil and score(m;) = ;. Otherwise, let prev(m;) be the match m that
is selected from the four (or less when some of them are nil) matches so
that score(m;) = score(m) + l; — overlap(m,m;) is maximized.

(e) Execute the functions insert(Ra, m;,t; — p;, score(m;) — p; — 1;) and
insert(Rs, m;,t; — p;, key(score(m;) — t; — l;,t; — p;)), where key(z,y)
denotes a multiple key that is compared lexicographically, i.e., = value

is compared first and y is used only when x is same.
3. Find the match m with the largest value of score(m), and construct a chain

from m by tracing back the prev() information.

In step 3(b), RMQ against R3 sometimes returns a match whose text position
is larger than ¢; and we dismiss it in step 3(c). There is no problem in doing so
because we always have a candidate of another type that is not worse than any
candidates of Type (d) in this case. Next we explain the two functions for the
matches of Type (c). Letting {I;} be a set of items for each of which we will give
three values a;, b;, and ¢;, Q be a queue of the items sorted by their b; values,
the function insert_queue(Q, I;, a;, b;, ¢;) is described as follows.

Algorithm 4 (insert_queue(Q, I;, a;,b;, ¢;)).
1. Find the item I. in @ that has the smallest b value such that b > b;.
2. Insert the item I; into @ if b; < a. or ¢; > c.. Otherwise, the algorithm is
finished.
3. For the items I; such that a; < b; < b; from the items that have larger b;,
do the following.
— If ¢; > ¢;, the algorithm is finished. Otherwise delete I; from Q.

This procedure runs in O((d + 1)logk) time where d is the number of items
deleted in step 3, and k is the current size of @), if we implement the queue @
with a balanced tree data structure like the AVL trees. The total number of
deletions can be bounded by the number of matches k, thus the computation
time for this function in total is O(klogk). Using this data structure, we can
maintain the match candidates of Type (c¢). Note that this data structure does
not maintain some of the matches of Type (c) if a better match candidate or that
with the same score exists. We can obtain the best candidate with the following
function, find_best(Q,b).

Match Chaining Algorithms for cDNA Mapping 471

Table 1. Computation time for mapping all the 60,770 FANTOM cDNAs to
three mouse chromosomes.

| Chromosome # || 1 | 15 | 19 |
Genome size (bp) 196,842,934/104,633,288|61,356,199

Query time in total (sec) 1565.48 1431.37| 1333.87
Suffix tree construction time (sec) 2294.28 1159.37 665.88

Algorithm 5 (find_best(Q,b)).

1. Find the item I, in @ that has the smallest b value such that b; > b.
2. If b > a., return the item I.. Otherwise, return nil.

This can also be done in O(log k) time. Thus our match chaining algorithm runs
in O(klogk) time in total.

There are several possible extensions of the MCCM algorithm. We can easily
extend our algorithm to use different scores for different bases instead of just
using the total length of the match chain. In our match chaining algorithm, we
find the previous(m) for a match m from the matches only from the region
specified by the maximum inter-match region length on the same strand. By
selecting previous(m) in our algorithm from both strands, without increasing
the time complexity, we can extend our algorithm for finding irregular mapping
sites when a protein is encoded from both DNA strands [I5]. An extension to
multiple alignments as in [I3] is also interesting, but the analysis of overlaps will
be very difficult and remains as a future task.

3 Computational Experiments

In this section, we examine the performance of the MCCM algorithm
through computational experiments in which we mapped c¢cDNA sequences
of the FANTOM 2.0 database [8] to the mouse chromosome 1 genome
sequence and several others taken from the whole genome sequence as-
sembly version 3 of Mouse Genome Sequencing Consortium (MGSC)
(ftp://wolfram.wi.mit.edu/pub/mouse_contigs/MGSC_V3). We used this data
because the FANTOM annotators used it for mapping the cDNAs. The FAN-
TOM 2.0 database consists of 60,770 full-length cDNA clones whose total size is
around 120 Mbp. Chromosome 1 is the largest chromosome of the mouse with a
length of 196,842,934 bp. In the following experiments, we used a Power4d CPU
running at 1.3 GHz.

Table [l shows the speed of the MCCM algorithm for the genome sequences
of three mouse chromosomes. In the experiments, we let [= 1 for the MRM
computation (i.e. we use MUMSs) and set the maximum inter-match to 3 Mbp,
which is larger than any intron size as far as the authors know. We did not
use a larger [because using a larger [leads to decrease of specificity accord-
ing to our preliminary experiments. It may be because the mouse genome does

472 T. Shibuya and I. Kurochkin

Table 2. Numbers of cDNAs mapped to the positive strand of Chromosome 1.

Algorithm MIML = 3 Mbp MIML not used
Ratio (%) [90 [80 [70 [60 [50 [90 [80 [70 | 60 | 50
#mapped [[1804]1907]1964][2032[2112][1808]1914[1983[2057]2153
#annotated [[1773[1824]1846]1860[1864][1774]1824]1846[1861]1864
Specificity (%)][98.3[95.6] 94.0] 91.5[88.3][98.1] 95.3] 93.1[90.5] 86.6
Sensitivity (%)]] 94.6] 97.3[98.5[99.3[99.5]| 94.7] 97.3] 98.5] 99.3] 99.5

not have many long copies of genes in the same chromosome. We set the mini-
mum MRM length threshold to 20, because extremely short matches can appear
randomly and they also cause the decrease of specificity. The table shows our
results are much faster than previous tools like BLAT [14] and sim4 [10], which
require about 2 to 20 seconds per query for a problem of the same size with
the same CPU. The MCCM algorithm requires only 0.026 seconds per query
on average. Note that the query time is roughly proportional to the query size.
The Squall [20] algorithm runs at a speed similar to ours, but the query time
of Squall is proportional to the genome size. On the other hand, the query time
of our algorithm is not much influenced by the the genome size. Table [T] reveals
that the query time increases only about 17% even if the genome size becomes
more than 3 times larger. This means that the query time will be still reasonable
even if we apply our algorithm to an entire genome with a size of 2 Gbp size
or larger. A suffix tree for a sequence of that size is difficult to construct in the
main memory of today’s typical machines, but we believe it will be easy to do
so in the very near future and then our algorithm will work very efficiently. The
time for constructing the suffix tree is proportional to the genome size, but we
only have to build it once.

Next, we examine the accuracy of the MCCM algorithm. We compared the re-
sults of our algorithms with the FANTOM annotations. We also did experiments
with the same algorithm but without setting the maximum inter-match length
(MIML) to see the importance of the MIML. Table P]shows the results. In the ta-
ble, the ‘MIML = 3 Mbp’ columns show the results of our algorithm where we set
the maximum inter-match length to 3Mbp, while the ‘MIML not used’ columns
show the results of the algorithm without MIML. Note that we did experiments
only against the positive strand of the chromosome. In the experiment, we accept
that the cDNAs are mapped to the chromosome if the total match chain length
exceeds ratio r of the cDNA length for some r. The ‘Ratio (%)’ row shows the
ratio 7, which we adjusted from 90% to 50%. The ‘#mapped’ row shows the
numbers of cDNAs that are determined to be mapped to the positive strand of
the chromosome by our algorithms. FANTOM annotators mapped 1,874 cDNAs
to the positive strand of this chromosome. We call these 1,874 cDNAs ‘annotated
cDNASs’. The ‘#annotated’ row shows the numbers of annotated cDNAs among
our results such that the annotated regions are the same as ours or overlap with
ours. The ‘Specificity (%)’ row shows the ratio of them among our results, while

Match Chaining Algorithms for cDNA Mapping 473

Table 3. An example of a cDNA mapping result.

Annotated positions Maximal match positions
Exon| c¢DNA Genome cDNA Genome
1 1:220 (65168568 : 65168788 2:224 (65168570 : 65168792

221 : 342 |65186935 : 65187056 220 : 346 65186934 : 65187060
343 : 489 |65194686 : 65194832|| 341 : 489 (65194684 : 65194832
490 : 590 (65202019 : 65202119|| 485 : 591 |65202014 : 65202120
589 : 628 (65205934 : 65205973
5 591 : 731 165205936 : 65206078|| 633 : 702 65205978 : 65206047
712 : 731 |65206059 : 65206078
732 : 779 |65209875 : 65209922
6 732 : 915 (65209875 : 65210057|| 848 : 886 (65209990 : 65210028
887 : 914 (65210028 : 65210055
7 916 : 1067|65211981 : 65212131 925 : 1068|65211989 : 65212132
8 ||1068 : 176865240140 : 65240840|[1066 : 1768|65240138 : 65240840

=W N

the ‘Sensitivity (%)’ row shows the ratio of them among the annotated 1,874
cDNAs. Both the sensitivity and the specificity of our algorithm are remarkably
high. For » = 80%, we achieved 95.6% specificity and 97.3% sensitivity for exam-
ple. The table also shows that we succeeded in increasing the specificity without
decreasing the sensitivity by setting the maximal inter-match length, especially
in the case of low ratio thresholds.

Finally, we show an example of the output of the MCCM algorithm in Table[3l
This table shows the result for the cDNA whose ID is ‘1110063D23’ in the
FANTOM database. It is annotated as ‘Camp-response element binding protein-
homolog’ and mapped to the chromosome 1. Our algorithm also maps this cDNA
to the chromosome 1. The ‘Annotated positions’ columns show the positions
given by the FANTOM annotators, while the ‘Maximal match positions’ show
the corresponding maximal match positions. We can see that several matches
overlap with each other, which means consideration of overlaps is mandatory,
though the overlaps are very short. Our algorithms do not consider biological
information like donor and acceptor signals. As a result, the boundaries are not
correct in many cases as seen in this example. Add to these, two of the exons are
divided into three matches, as our algorithm only outputs exact matches, which
is caused by indels or substitutions. But, all in all, the match boundaries are
quite close to the actual annotated boundaries, and we succeeded in mapping
this cDNA to the correct site of the genome.

4 Concluding Remarks

We proposed a new cDNA mapping algorithm called the MCCM (Match
Chaining-based ¢cDNA Mapping) algorithm based on suffix trees and a match
chaining technique. For it, we proposed a new O(klogk) match chaining algo-
rithm which considers overlaps and distances between matches. We also exam-

474 T. Shibuya and I. Kurochkin

ined the speed and accuracy of our algorithm through computational experi-
ments using FANTOM cDNA sequences and the mouse genome. According to
the experiments, our algorithm runs very fast, and we succeeded in finding almost
the same (> 95%) set of cDNAs that were given by the FANTOM annotators.

Several tasks remain as future work. The suffix tree is a very large data
structure. An implementation with suffix arrays or compressed suffix arrays is
very attractive. As shown in the experiments, the match boundaries obtained
with our algorithms are a little bit different from the actual boundaries of the
exons. Correcting the boundaries does not seem to be a complex problem and
this will be addressed in our future work.

Acknowledgment

The authors thank Prof. Kunihiko Sadakane of Kyushu University and Prof.
Akihiko Konagaya of RIKEN for various interesting discussions on related prob-
lems.

References

1. Aho, A.V., Hopcroft, J.E. and Ullman, J.D. Data Structures and Algorithms, (1983)
Addison-Wesley.

2. Altschul, S.F., Gish, W., Miller, W., Myers, E-W. and Lipman, D.J. (1990) Basic
local alignment search tool. J. Mol. Biol., 215, 403-410.

3. Adelson-Velskil, G.M. and Landis, E.M. (1962) Soviet Math. (Dokl.) 3, 1259-1263.

4. Bender, M.A. and Farach, M. (2000) The LCA problem revisited. Proc. Latin
American Theoretical Informatics, LNCS 1776, 88-94.

5. Bentley, J. and Maurer, H. (1980) Efficient worst-case data structures for range
searching. Acta Informatica, 13, 155-168.

6. Delcher, A.L., Kasif, S., Fleischmann, D., Paterson, J., White, O. and Salzberg,
S.L. (1999) Alignment of whole genomes. Nucleic Acids Res., 27(11), 2369-2376.

7. Delcher, A.L., Phillippy, A., Carlton, J. and Salzberg, L. (2002) Fast algorithms for
large-scale genome alignment and comparison. Nucleic Acids Res., 30(11), 2478-
2483.

8. FANTOM Consortium and the RIKEN Genome Exploration Research Group
Phase I & II Team. (2002) Analysis of the mouse transcriptome based on functional
annotation of 60,770 full-length ¢cDNAs. Nature, 420, 563-573.

9. Farach, M. (1997) Optimal suffix tree construction with large alphabets. Proc. 38th
IEEE Symp. Foundations of Computer Science, 137-143.

10. Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M. and Miller, W. (1998) A computer
program for aligning a cDNA Sequence with a Genomic DNA Sequence. Genome
Res., 8, 967-974.

11. Gelfand, M.S., Mironov, A.A. and Pevzner, P.A. (1996) Gene recognition via
spliced sequence alignment. Proc. Natl. Acad. Sci. USA, 93, 9061-9066.

12. Gusfield, D. (1997) Algorithms on strings, trees, and sequences: computer science
and computational biology, Cambridge University Press.

13. Hoehl, M., Kurtz, S. and Ohlebusch, E. (2002) Efficient multiple genome alignment.
Bioinformatics, 18(Suppl. 1), S312-320.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

Match Chaining Algorithms for cDNA Mapping 475

Kent, W. J. (2002) The BLAST-like alignment tool. Genome Res., 12, 656-664.
Labrador, M., Mongelard, F., Plata-Rengifo, P., Bacter, E.M., Corces, V.G. and
Gerasimova, T.I. (2001) Protein encoding by both DNA strands. Nature, 409, 1000.
Manber, U. and Myers, G. (1993) Suffix arrays: a new method for on-line string
searches. SIAM J. Comput., 22(5), 935-948.

McCreight, E.M. (1976) A space-economical suffix tree construction algorithm. J.
ACM, 23, 262-272.

Mott, R. (1997) EST_GENOME: A program to align spliced DNA sequences to
unspliced genomic DNA. Comput. Applic. Biosci., 13(4), 477-478.

Myers, E and Miller, W. (1995) Chaining multiple-alignment fragments in sub-
quadratic time. Proc. ACM-SIAM Symp. on Discrete Algorithms, 38-47.
Ogasawara, J. and Morishita, S. (2002) Fast and sensitive algorithm for aligning
ESTs to Human Genome. Proc. 1st IEEE Computer Society Bioinformatics Con-
ference, Palo Alto, CA, 43-53.

Sze, S-H. and Pevzner, P.A. (1997) Las Vegas algorithms for gene recognition:
suboptimal and error-tolerant spliced alignment. J. Comp. Biol., 4(3), 297-309.
Ukkonen, E. (1995) On-line construction of suffix-trees. Algorithmica, 14, 249-260.
Usuka, J., Zhu, W. and Brendel, V. (2000) Optimal spliced alignment of homolo-
gous cDNA to a genomic DNA template. Bioinformatics, 16(3), 203-211.

Weiner, P. (1973) Linear pattern matching algorithms. Proc. 14th Symposium on
Switching and Automata Theory, 1-11.

	Introduction
	Algorithms
	Preliminaries
	Dynamic Range Maximum Query
	Match Chaining Algorithms

	Computational Experiments
	Concluding Remarks

