
Prefix-Shuffled Geometric Suffix Tree

Tetsuo Shibuya

Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

tshibuya@hgc.jp

Abstract. Protein structure analysis is one of the most important re-
search issues in the post-genomic era, and faster and more accurate index
data structures for such 3-D structures are highly desired for research on
proteins. The geometric suffix tree is a very sophisticated index struc-
ture that enables fast and accurate search on protein 3-D structures. By
using it, we can search from 3-D structure databases for all the substruc-
tures whose RMSDs (root mean square deviations) to a given query 3-D
structure are not larger than a given bound. In this paper, we propose
a new data structure based on the geometric suffix tree whose query
performance is much better than the original geometric suffix tree. We
call the modified data structure the prefix-shuffled geometric suffix tree
(or PSGST for short). According to our experiments, the PSGST out-
performs the geometric suffix tree in most cases. The PSGST shows its
best performance when the database does not have many substructures
similar to the query. The query is sometimes 100 times faster than the
original geometric suffix trees in such cases.

1 Introduction

Protein 3-D structure analysis is one of the most important post-genomic re-
search topics in molecular biology. Recently, more and more protein structures
are solved by state-of-the-art technologies such as NMR (nuclear magnetic res-
onance), and the size of the protein 3-D structure database increases larger and
larger. Now, there are more than 40,000 entries in the PDB database [2] and
it is still increasing. The protein structures are said to have similar functions
if their 3-D structures are similar. Thus, to analyze the functions of a protein
whose structure is newly determined, it is very important to search for similar
(sub)structures from the growing database. There are many comparison algo-
rithms for protein structures [5], and the results could be very accurate, but
it will require enormous amount of time to apply them against the very large
databases. Hence, indexing techniques for protein structure databases are highly
desired to avoid the large computation time.

The similarity of two protein structures is often measured by the RMSD (root
mean square deviation) [1,4,11]. The geometric suffix tree [12] is an indexing data
structure that enables efficient search from a 3-D structure database for all the
substructures whose RMSDs to a given query are not larger than some given
bound. It also has many potential applications, such as 3-D motif finding and

N. Ziviani and R. Baeza-Yates (Eds.): SPIRE 2007, LNCS 4726, pp. 300–309, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Prefix-Shuffled Geometric Suffix Tree 301

functional prediction. The geometric suffix tree is based on the famous suffix trees
for alphabet strings [6,8,10,13,14], but it deals with 3-D coordinates instead of
alphabet characters. In this paper, we propose a new data structure based on
the geometric suffix tree, which we call the prefix-shuffled geometric suffix tree,
or PSGST for short. It improves the query performance of the geometric suffix
tree by changing the order of atoms in each substructure. We will demonstrate
the PSGSTs’ performance through experiments.

This paper is organized as follows. In section 2, we explain the preliminaries.
In section 3, we explain a new notion called the ‘prefix-shuffled structure’ that
would help us to improve the query performance of the geometric suffix trees.
Then, in section 4, we explain the newly proposed data structure, the prefix-
shuffled geometric suffix tree. In section 5, we demonstrate the performance of
it through experiments. Finally in section 6, we conclude our results and discuss
future work.

2 Preliminaries

2.1 RMSD: The Root Mean Square Deviation

A protein is a chain of amino acids. Each amino acid has one unique carbon
atom named Cα, and the set of all the Cα atoms in a protein is called the
backbone of the protein. The backbone is topologically linear, but it forms a
geometrically very complex structure in the 3-D space. Most previous work on
protein 3-D structures deals with the coordinates of the backbone atoms. Thus,
we also consider the coordinates of the backbone atoms as the target to index.
The most popular and basic measure to determine geometric similarity between
two sets of points in 3-D, like the positions of backbone atoms, is the RMSD
(root mean square deviation) [1,4,11].

Before defining the RMSD, let us define the measures that we call the MSSD
(minimum sum squared distance) and the RSSD (Root Sum Square Distance).
Let the two sets of points (i.e., structures) to be compared be P ={p1, p2, . . . , pn}
and Q = {q1, q2, . . . , qn}, where pi and qj are 3-D coordinates. To compute the
MSSD/RSSD/RMSD between two sets of 3-D coordinates, we must know which
atom in one structure corresponds to which atom in the other. Here we con-
sider pi corresponds to qi for all i. Let mssd(P, Q) be the minimum value of∑n

i=1 ‖pi−(R ·qi+v)‖2 over all the possible rotation matrices R and translation
vectors v, where ‖ · ‖ denotes the norm. Let R̂(P, Q) and v̂(P, Q) be the rota-
tion matrix and the translation vector that satisfies

∑n
i=1 ‖pi − (R̂(P, Q) · qi +

v̂(P, Q))‖2 = mssd(P, Q). Then the RSSD is defined as the squared root of it:
rssd(P, Q) =

√
mssd(P, Q), and the RMSD is finally defined as rssd(P, Q)/

√
n.

It is known that v̂(P, Q) =
∑n

i=1 (pi − R̂(P, Q) · qi)/n. It means that the
centroids of the two point sets must be translated to the same point by v̂(P, Q).
Hence, if both of the point sets are translated so that their centroids are located
at the origin of the coordinates, the RMSD problem is reduced to a problem of
finding R that minimizes f(R) =

∑n
i=1 ‖pi −R ·qi‖2. We can solve this problem

302 T. Shibuya

Fig. 1. A geometric trie for two protein 3-D structures. A node is constructed for P [1..7]
and Q[1..7], as the RSSD between P [1..7] and Q[1..7] is smaller than the threshold
bRSSD. The combined edge is represented by arbitrary one of the two substructures —
P [1..7] is chosen in this example.

in linear time by using the singular value decomposition (SVD) [1] as follows.
Let H =

∑n
i=1 pi · qt

i, where vt means the transpose of vector v. Then f(R) can
be described as

∑n
i=1 (pt

ipi + qt
iqi)− trace(R ·H), and trace(RH) is maximized

when R = V UT , where UΛV is the SVD of H , and UT denotes the transpose of
matrix U . The SVD of H can be done in constant time as H is a fixed-size 3× 3
matrix (see [7] for SVD algorithms). Hence the optimal rotation matrix can be
obtained in constant time from H . In this way, we can compute the RMSD in
O(n) time. Note that there are rare degenerate cases where det(V UT) = −1,
which means that V UT is a reflection matrix. We ignore the degenerate cases in
this paper.

According to [12], the RMSD value, the optimal rotation matrix R̂(P, Q), and
the optimal translation vector v̂(P, Q) can be computed incrementally by keeping
some additional values for computation, i.e., we can compute R̂(Pi, Qi) and
v̂(Pi, Qi) for Pi = {p1, p2, . . . , pi} and Qi = {q1, q2, . . . , qi} in O(1) time after
the computation of R̂(Pi−1, Qi−1) and v̂(Pi−1, Qi−1) for Pi−1={p1, p2, . . . , pi−1}
and Qi−1 = {q1, q2, . . . , qi−1}, for any i (see [12] for more details).

2.2 Geometric Suffix Trees

The suffix tree of a string is the compacted trie of all its suffixes. Likewise, the
geometric suffix tree [12] is based on a data structure called the geometric trie,
which is defined as follows.

Consider a set of n 3-D structures W = {W1, W2, . . . , Wn}, and let �i be the
length of Wi. Let w

(i)
j denote the coordinates of the j-th atom of Wi. Let Wi[j..k]

denote {w
(i)
j , w

(i)
j+1, . . . , w

(i)
k }, which means a structure formed by the (k−j+1)

atoms from the j-th atom to the k-th atom in Wi. We call it a substructure of
Wi. Furthermore, we call Wi[1..j] (1 ≤ j ≤ �i) a prefix substructure of Wi.
Conversely, Wi[j..�i] is called a suffix substructure. Then, the geometric trie for
W is a rooted tree data structure that has the following features (Figure 1):

Prefix-Shuffled Geometric Suffix Tree 303

1. All the internal nodes (nodes other than the root and the leaves) have more
than one child.

2. The tree has n leaves, each of which corresponds to one protein structure in
W, and no two leaves correspond to the same structure. Let leaf(i) denote
the leaf that corresponds to Wi.

3. All the edges e except for some of edges that end at leaves correspond to
a substructure P (e) = Wi[j..k], and they have information of some 3-D
rotation matrix R(e) and some 3-D translation vector v(e) for each.

4. Let S(e) be P (e) rotated by R(e) and translated by v(e), which is called the
‘edge structure’ of e. For a node x in the tree, let S(x) be a structure that
is constructed by concatenating all the edge structures of the edges on the
path from the root to x, which we call the ‘node structure’ of x. For any
leaf v = leaf(i) and its node structure S(v), the RSSD between any prefix
substructure of S(v) and the prefix substructure of Wi (of the same length)
must not be larger than some given fixed bound bRSSD.

5. For an edge e = (v, w) with some corresponding substructure P (e), the
‘branching structure’ str(e) is defined as a structure that is obtained by
adding the coordinates of the first atom of S(e) (i.e., S(e)[1]) after S(v). For
any internal node v with more than one outgoing edge with corresponding
substructures, the RSSD between str(e1) and str(e2) must be larger than
bRSSD, where e1 and e2 are arbitrary two of the edges.

Then the geometric suffix tree of a structure P = {p1, p2, . . . , pn} is defined
as the geometric trie of all the suffix substructures of P . The geometric suffix
tree can be stored in O(n) memory, though there are O(n2) substructures in
the target structure. It can be built in O(n2) time by just adding suffix sub-
structures into the tree one by one, using the incremental RMSD computation
technique. The geometric suffix tree can be easily extended to deal with all the
suffix substructures of a set of structures, like the generalized suffix trees for
ordinary alphabet strings [8].

A prefix substructure of a node structure is called a ‘representative structure’.
To search for a substructure similar (i.e., RMSD is within some bound bRMSD) to
a query Q[1..m] using the geometric suffix tree, we first search for all the represen-
tative structures of length m whose RMSD to Q is within bRMSD+(bRSSD/

√
m).

There always exist (one or more) original substructures that correspond to each
representative structure. Finally, if the RMSDs between the query and the enu-
merated original substructures are actually within bRMSD, we output them as
the answers.

3 Prefix-Shuffled Structures

When we search for similar substructures from the geometric suffix trees, we
incrementally compare RSSDs between the prefix substructures of the query
structure and representative structures. In Figure 2, the line noted as ‘Normal’
shows the RSSDs of prefix substructures (of various lengths) of two very different

304 T. Shibuya

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

RS
SD

 (R
oo

t S
um

 S
qu

ar
e

D
is

ta
nc

e)
 (

Å
)

Number of Atoms

Normal
Random

Fig. 2. Prefix RSSDs and Shuffled Prefix RSSDs. The RSSD goes up faster if the order
of the atoms are shuffled.

proteins (a myoglobin and a rhodopsin taken from the set of structures used in
section 5). In this example, the RMSD between two prefix substructures of length
30 is 9.40Å (i.e., RSSD is 50.62Å), which means that the two structures are not
at all similar to each other.

Consider the case that the myoglobin structure above is stored in the geomet-
ric suffix tree as a representative structure, and we want to find all the represen-
tative structures whose RSSDs to the rhodopsin structure above is within 20.0Å.
Then we must incrementally compare these prefix structures up to 12 atoms. It
means that we have to meaninglessly compute RSSDs 12 times, though these
two structures are not at all similar to each other.

Let π = {π1, π2, . . . , πk} be some permutation of length k. For a structure
P = {p1, p2, . . . , pn} such that n ≥ k, consider a new structure Hπ(P) =
{pπ1 , pπ2 , . . . , pπk

, pk+1, pk+2, . . . , pn}, which we call the prefix-shuffled struc-
ture of P by π.

In Figure 2, the dotted line noted as ‘Random’ shows the RSSDs between
the prefix substructures of the prefix-shuffled structures of the same two struc-
tures (a myoglobin and a rhodopsin) with a randomly-generated permutation
of length 30.1 In other words, we compare Hπ(P) and Hπ(Q) instead of P and
Q. According to the figure, the RSSD exceeds 20.0Å if the prefix substructure
length becomes larger than 7, which is much smaller than the ‘12’ in the previous
‘Normal’ case. It is a very reasonable result, because the distances between two
adjacent atoms in the prefix-shuffled structure is often much larger than those
in the original structure. Based on these observations, we consider that we may
be able to improve the query performance by shuffling the structures with some
appropriate permutation (both for the database and the query). The new data
structure proposed in the next section is based on this intuition.

1 The permutation we used here is {3, 25, 12, 29, 2, 13, 19, 16, 17, 10, 11, 9, 7, 1, 8, 18, 26,
27, 23, 5, 28, 15, 21, 20, 24, 14, 30, 22, 4, 6}.

Prefix-Shuffled Geometric Suffix Tree 305

4 Prefix-Shuffled Geometric Suffix Trees

We define the prefix-shuffled geometric suffix tree (PSGST for short) for a struc-
ture P as the geometric trie over all the prefix-shuffled suffix substructures of
P by some permutation π (i.e., {Hπ(P [i..n])|1 ≤ i ≤ n − |π| + 1}). The mem-
ory requirement for storing the PSGST is O(n) (same as the geometric suffix
tree). Recall that the geometric suffix tree is built by just adding each suffix
substructures one by one. The PSGSTs can also be built in the same way as the
geometric suffix trees, which requires O(n2) time. Moreover, we can search for
substructures that is similar to Q by just searching for representative structures
that is similar to the prefix-shuffled query Hπ(Q) on the PSGST, if the length of
Q is not smaller than the length of π. In this paper, we do not deal with queries
which are shorter than the permutation π.

To construct the PSGSTs, we need some appropriate permutation of a given
length. A random permutation can be used for this purpose. A uniform random
permutation of length k can be generated in O(k) time by iteratively swapping
each position i (1 ≤ i ≤ k, in increasing order) of a list {1, 2, . . . , k} with a
randomly chosen position among positions j such that j ≥ i (see [3] for details).

Other than the random permutations, the following permutation can also be
used. A permutation π = {π1, π2, . . . , πk} is called a furthest permutation if it
satisfies π1 = 1, π2 = k, and min�<i |πi−π�| ≥ min�<i |πj−π�| for any i and j such
that i < j. We call it ‘furthest’ because πi is furthest from {π1, . . . , πi−1} among
πi, πi+1, . . . , πk. For example, {1, 9, 5, 3, 7, 2, 4, 6, 8} is a furthest permutation.
We can assume that the distance between two atoms pπi and pπj would be large
if |πi − πj | is large. Therefore we consider the furthest permutation might be
suitable for the PSGSTs.

The furthest permutation of length k can also be computed in O(k) time with
a bit operation technique as follows. To ease discussion, we first assume that
k − 1 is a power of 2 and let d = log2(k − 1). Let revd(x) be a function that
reverses the last d bit of x. For example, rev3(3) = rev3(011(2)) = 110(2) = 6.
The function revd(x) can be computed in O(1) time.2 Then consider a permu-
tation π(k) of length k where π

(k)
1 = 1, π

(k)
2 = k, and π

(k)
i = revd(i − 2) + 1 for

i ≥ 3. It is the furthest permutation of length k, and it can be computed in O(k)
time. In case that k−1 is not a power of 2, let k′ be the smallest power of 2 that
is not smaller than k, and construct the furthest permutation π(k′+1) with the
above method. Then the furthest permutation of length k can be obtained by
just removing numbers larger than k from π(k′+1), which requires only O(k) time.

2 We can compute revd(x) by using a pre-computed table of the values of rev�d/c�(x)
for 0 ≤ x < 2�d/c�, where c is an appropriate constant positive integer. If we use
appropriate c, the table size must be reasonably small, even if k (i.e., 2d + 1) is
very large. But even without such table, it takes only O(log d) time to compute
revd(x) with the basic bit operations of AND, OR, and SHIFT, and consequently the
total computing time is still O(k log log k) time. If k is a 32-bit (or even a 64-bit)
integer, we can assume it as linear time. Note that it is very easy to design a digital
circuit that computes revd(x) in constant time.

306 T. Shibuya

Table 1. Time (in second) for constructing a geometric suffix tree and PSGSTs. The
‘Random’ columns shows the average/minimum/maximum construction time of 100
PSGSTs constructed with different permutations. The ‘Furthest’ column shows the
construction time for the PSGST constructed with the furthest permutation.

PSGST
GST Random

FurthestAverage Minimum Maximum
Time (sec) 39.10 37.26 35.87 38.65 37.89

Thus we conclude that the total computation time for constructing the furthest
permutation of length k is O(k).

In the next section, we will show through experiments how well our simple
strategy works for 3-D substructure search.

5 Experiments

In this section, we demonstrate the performance of the PSGSTs. All the exper-
iments are done on a Sun Fire 15K super computer with 288 GB memory and
96 UltraSPARC III Cu CPUs running at 1.2GHz.3 As a data for experiments,
we used a set of 228 myoglobin or myoglobin-related PDB data files containing
275 protein structures, which is same as the set used in the experiments by [12].
The total number of amino acids in the protein set is 41,719.

At first, we compared the construction time of PSGSTs against the construc-
tion time of the geometric suffix trees, by setting the RSSD bound bRSSD =
20.0Å (Table 1). In the table, the ‘GST’ column shows the construction time of
the geometric suffix tree against the myoglobin database. Next, we constructed
100 PSGSTs with different random permutations of length 50.4 The ‘Random’
column shows the average, minimum, and maximum construction time among
these 100 experiments. They are a little faster than the case of the geometric
suffix tree, but it is not much different. We also did experiments by using the
furthest permutation of length 50. The ‘Furthest’ column shows the result. The
result is almost the same as the average of the results of random permutations.
We assume these results are very reasonable, as there is no difference between
the algorithms for the PSGSTs and the geometric suffix trees except for the
prefix shuffling.

We next examined the query speed of the above 101 PSGSTs (i.e., the 100
PSGSTs constructed with different random permutations, and the one con-
structed with the furthest permutation) and the geometric suffix tree (Table 2).
We used two protein substructures as queries: (a) A substructure from the 20th
amino acid to the 69th amino acid of the backbone structure of a rhodopsin5

3 We used only one CPU for each experiment.
4 We used the Mersenne-Twister [9] for generating random numbers.
5 As seen in section 3, rhodopsins have nothing to do with myoglobins, and their

structures are totally different.

Prefix-Shuffled Geometric Suffix Tree 307

Table 2. Time (in second) for queries on the geometric suffix trees and the PSGSTs.
In (a), we used as a query a protein structure unrelated to any of the structures in a
myoglobin structure database. In (b), by contrast, we used a myoglobin structure that
is included in the same database.

(a) A rhodopsin query against the myoglobin database.

bRMSD (Å) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
#hits 0 0 0 0 0 0 0 0 0 0
GST 0.0207 0.0825 0.1736 0.2567 0.3306 0.3960 0.4554 0.5146 0.5726 0.6321

Ran
avg 0.0028 0.0063 0.0127 0.0241 0.0428 0.0716 0.1130 0.1681 0.2379 0.3244

PS
-dom

min 0.0002 0.0008 0.0018 0.0037 0.0080 0.0185 0.0372 0.0679 0.1053 0.1607
-GST max 0.0167 0.0461 0.0866 0.1241 0.1621 0.1986 0.2350 0.3020 0.4008 0.5130

Furthest 0.0013 0.0022 0.0044 0.0081 0.0332 0.0576 0.1012 0.1605 0.2423 0.0163

(b) A myoglobin query against the myoglobin database.

bRMSD (Å) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
#hits 1 1 4 9 19 26 33 44 86 142
GST 0.0654 0.1065 0.1547 0.2333 0.3145 0.3994 0.4662 0.5473 0.7101 0.7859

Ran
avg 0.0583 0.0887 0.1219 0.1688 0.2372 0.2960 0.3519 0.4287 0.5443 0.6590

PS
-dom

min 0.0472 0.0712 0.0986 0.1243 0.1889 0.2445 0.2958 0.3476 0.4480 0.5608
-GST max 0.0778 0.1143 0.1580 0.2180 0.2984 0.3624 0.4359 0.5174 0.6835 0.7871

Furthest 0.0615 0.0930 0.1637 0.2122 0.2633 0.3164 0.3775 0.4829 0.5796 0.7463

(named 1F88) obtained from the PDB, and (b) A substructure from the 20th
amino acid to the 69th amino acid of the backbone structure of a myoglobin
(named 103M), which is contained in the myoglobin database we used for con-
structing the geometric suffix trees and the PSGSTs. Note that these queries are
same as those used in [12]. For each query, we searched for similar substructures
with 10 different settings of the RMSD bound (bRMSD). In the table, the ‘#hits’
rows show the numbers of similar structures obtained with the designated bRMSD

settings, the ‘GST’ rows show the query time (in second) on the geometric suffix
tree, and the ‘PSGST’ rows show the query time (in second) on the PSGSTs. In
the ‘PSGST’ rows, the ‘Random’ rows show the average/minimum/maximum
query time among the 100 PSGSTs constructed with different random permuta-
tions, while the ‘Furthest’ rows show the query time on the PSGST constructed
with the furthest permutation.

In the experiment (a), the PSGST outperforms the geometric suffix tree in
all the 101 cases. The PSGSTs constructed with random permutations perform
about 1.9–13 times better than the geometric suffix tree in average. Moreover,
the PSGSTs perform more than 100 times better than the geometric suffix tree
in the best case. If we use the furthest permutation, the PSGST performs about
2.6–37.5 times better than the geometric suffix tree. The results by the furthest
permutation is better than the average of results by random permutations, but
it is not the best one among the 101 permutations we tried.

Consider a Figure 2-like graph for two similar structures. In this case, the
RSSD will not go up until the end of the structure. Thus, we can easily imagine

308 T. Shibuya

that the PSGSTs are not so efficient if the database has many structures similar
to the query, which can be seen in the experiment (b). But, according to the
table, the PSGST outperforms the geometric suffix tree in most cases. If we use
a random permutation, the PSGST performs about 1.5 times better than the
geometric suffix tree in average. If we use the furthest permutation, the PSGST
outperforms the geometric suffix tree in all the cases but 1 case. All in all, we
can conclude that the PSGST outperforms the geometric suffix tree.

6 Discussion

We proposed a new data structure based on the geometric suffix tree, which we
call the prefix-shuffled geometric suffix tree (PSGST). The PSGSTs show higher
query performance than the geometric suffix trees in most cases, though the
construction time is almost the same. In the best case, a query on a PSGST is
more than 100 times faster than the same query on the geometric suffix tree.

Several tasks remain as future work. The PSGST performs well especially
when there are not many substructures similar to the query in the database. It
means that the PSGST can be used as a very powerful filtering tool for some
other more flexible similarity search algorithms on 3-D structures, which is one of
the future tasks. Another future task is finding gapped 3-D motifs of proteins by
using the PSGST. We do not know how to get the optimal permutation for the
PSGST, which is an open problem. On PSGSTs, we cannot search for queries
shorter than the permutation used for constructing the PSGST. It is also an
open problem how to smartly deal with such short queries on PSGSTs.

Acknowledgement

All the computational experiments in this research were done on the Super Com-
puter System, Human Genome Center, Institute of Medical Science, University
of Tokyo.

References

1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets.
IEEE Trans Pattern Anal. Machine Intell. 9, 698–700 (1987)

2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucl. Acids Res. 28, 235–
242 (2000)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 2nd edn.
MIT Press, Cambridge (2001)

4. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transforma-
tions: a comparison of four major algorithms. Machine Vision and Applications 9,
272–290 (1997)

5. Eidhammer, I., Jonassen, I., Taylor, W.R.: Structure Comparison and Structure
Patterns. J. Computational Biology 7(5), 685–716 (2000)

Prefix-Shuffled Geometric Suffix Tree 309

6. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. 38th
IEEE Symp. Foundations of Computer Science, pp. 137–143. IEEE Computer So-
ciety Press, Los Alamitos (1997)

7. Golub, G.H., Van Loan, C.F.: Matrix Computation, 3rd edn. John Hopkins Uni-
versity Press (1996)

8. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, Cambridge (1997)

9. Matsumoto, M., Nishimura, T.: A nonempirical test on the weight of pseudorandom
number generators. In: Fang, K.T., et al. (eds.) Monte Carrlo and Quasi-Monte
Carlo Methods 2000, pp. 381–395. Springer, Heidelberg (2002)

10. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.
ACM. 23, 262–272 (1976)

11. Schwartz, J.T., Sharir, M.: Identification of partially obscured objects in two and
three dimensions by matching noisy characteristic curves. Intl. J. of Robotics Res. 6,
29–44 (1987)

12. Shibuya, T.: Geometric Suffix Tree: A New Index Structure for Protein 3-D Struc-
tures. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp.
84–93. Springer, Heidelberg (2006)

13. Ukkonen, E.: On-line construction of suffix-trees. Algorithmica 14, 249–260 (1995)
14. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th Symposium on

Switching and Automata Theory, pp. 1–11 (1973)

	Introduction
	Preliminaries
	RMSD: The Root Mean Square Deviation
	Geometric Suffix Trees

	Prefix-Shuffled Structures
	Prefix-Shuffled Geometric Suffix Trees
	Experiments
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

