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Fast Hinge Detection Algorithms
for Flexible Protein Structures

Tetsuo Shibuya

Abstract— Analysis of conformational changes is one of
the keys to the understanding of protein functions and in-
teractions. For the analysis, we often compare two protein
structures, taking flexible regions like hinge regions into
consideration. The RMSD (Root Mean Square Deviation)
is the most popular measure for comparing two protein
structures, but it is only for rigid structures without hinge
regions. In this paper, we propose a new measure called
RMSDh (Root Mean Square Deviation considering hinges)
and its variant RMSDh(k) for comparing two flexible
proteins with hinge regions. We also propose novel efficient
algorithms for computing them, which can detect the hinge
positions at the same time. The RMSDh is suitable for
cases where there is one small hinge region in each of the
two target structures. The new algorithm for computing
the RMSDh runs in linear time, which is the same as the
time complexity for computing the RMSD and is faster
than any of previous algorithms for hinge detection. The
RMSDh(k) is designed for comparing structures with more
than one hinge region. The RMSDh(k) measure considers
at most k small hinge region, i.e., the RMSDh(k) value
should be small if the two structures are similar except
for at most k hinge regions. To compute the value, we
propose anO(kn2)-time and O(n)-space algorithm based
on a new dynamic programming technique. With the
same computational time and space, we can enumerate
the predicted hinge positions. We also test our algorithms
against actual flexible protein structures, and show that
the hinge positions can be correctly detected by our
algorithms.

Index Terms— algorithm, protein hinge detection, pro-
tein 3-D structure comparison, dynamic programming

I. I NTRODUCTION

Proteins play enormous variety of roles in living
systems. The functions of the proteins are said to be
determined by their 3-D structures, and consequently the
analysis of protein structures is one of the most important
research topics in molecular biology. The analysis of
protein structures often starts with a comparison of
two similar structures, and there have been proposed a
tremendous number of methods to compare two protein
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3-D structures [7], [19], [28]. Structure comparison algo-
rithms can be categorized into two types: rigid structure
comparison methods and flexible structure comparison
methods. The former methods consider protein structures
as rigid bodies. But there are many proteins whose struc-
tures change conformationally. Most of their structures
can be divided into several (almost) rigid substructures
separated by small flexible parts (which often consists
of only one atom) called hinge regions or just ‘hinges’
(Figure 1).1 They change their structures by rotating
around the hinge, due to their physical conditions, re-
lations to other proteins, or some point mutations. The
latter flexible structure comparison methods take hinges
into consideration when they compare structures. The
hinges sometimes take very important roles for their
functions [28]. Due to the importance of the roles of
these flexible proteins, the number of the entries in the
databases of such flexible proteins increases rapidly [5],
[9], [11], [23].

There are three tasks when we compare two flexible
structures. At first we have to find the correspondence
between atoms. We next have to find locations of hinges
and finally we have to calculate superposition for each
rigid fragment. But if we have determined the corre-
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Fig. 1. Hinge bending of a protein. A protein sometimes changes
its structure by rotating around an atom, which is called a hinge.

1Notice that the ‘hinge region’ is different from the notion called
‘hinge domain’.
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spondence and the hinge positions, it is not difficult
to compute the superposition. Thus, flexible structure
comparison methods can be categorized into two types.
One is a type of methods that does everything —
they find the atom correspondence, the hinge positions,
and the superposition simultaneously [4], [25], [30].
The other type of methods is dedicated to only hinge
detection and calculation of superposition [3], [15], [20],
[21], [29], assuming that the atom correspondence is
given. The methods of the former type are more general
than those of the latter, but they are definitely more
difficult. Note that there are many situations in which
only the latter methods are needed. For example, we
always know the atom correspondence in two structures
of the same, or significantly similar proteins. In case
their amino acid sequences are similar, we can easily
find the correspondence by using the ordinary sequence
alignment. Our algorithms proposed in this paper are the
methods of the latter type, and we do not deal with how
to find the atom correspondence. Note that there is a
third approach for hinge detection which predicts hinge
positions from a single structure without comparing with
other structures [8], [10], unlike the above comparison-
based methods. But we do not deal with them in this
paper.

When we compare two structures (by either of the
two approaches), some appropriate scoring measure is
desired. The measure must be mathematically clear and
moreover easy to compute. The RMSD (Root Mean
Square Deviation) [1], [6], [17], [18], [24] is the most
commonly used measure for comparing two rigid struc-
tures (see section II for details). It is defined very clearly
and can be computed very efficiently (in linear time).
But it is designed only for rigid structures. There are no
standard measures to be optimized for flexible structure
comparison, as it seems very difficult to design a measure
that can be efficiently computed.

In this paper, we propose measures for comparing
flexible protein structures, and fast algorithms to com-
pute them. With either of the algorithms, we can obtain
the predicted positions of the hinges at the same time.
We first propose a measure called the RMSDh (Root
Mean Square Deviation considering hinges), which is
a generalization of the RMSD with consideration of a
single hinge region. We also propose an algorithm that
computes the RMSDh in linear time, which is the same
as the time complexity for computing the RMSD, even
though our algorithm detects the hinge position at the
same time. It is much faster than any previous hinge
detection algorithms, which require at least quadratic
time. We then generalize the RMSDh for proteins with
at mostk hinges, and call the generalized measure the

RMSDh(k). We propose anO(kn2)-time andO(n)-space
algorithm for computing it, wheren is the length of the
structures to be compared. We will also show that we can
detect the hinge positions with the same time and space
complexity, by using a divide-and-conquer technique.

In these algorithms, we assume that each hinge region
consist of only one atom (residue). Precisely, if the hinge
region consists of a single atom, the angles of the rotation
is limited due to physical/chemical restrictions. On the
other hand, the limitation can be ignored if we consider
hinge regions with several residues. In this paper, we
assume that each hinge region consist of only one atom,
but we ignore the limitation. By doing so, we can
simplify the problem and fast algorithms can be designed
as shown in later sections. Moreover, the algorithms can
be used as a heuristic algorithm for proteins with non-
single residue hinges, as shown in the computational
experiments in section V.

Availability: FastHinge 1.0, the program devel-
oped for this research, can be downloaded from
http://www.hgc.jp/˜tshibuya/softwares/. Currently, the
program runs only on Windows or SunOS.

Organization of this paper:In section II, we present
the definition of the RMSD and algorithms for com-
puting it as preliminaries. Then we propose the new
RMSDh measure and algorithms for it in section III.
We propose the RMSDh(k) measure and algorithms for
it in section IV. In section V, we show computational
experiments. Finally in section VI, we conclude our
results and discuss future work.

II. PRELIMINARIES

A. RMSD: The Root Mean Square Deviation

A protein 3-D structure can be represented by various
ways, but one popular way is to represent it by a list of
3-D coordinates of its backboneCα atoms. The RMSD
(root mean square deviation) [1], [6], [17], [18], [24]
is the most common way to compare two lists of 3-D
coordinates.

Let the two sets of points (i.e., protein structures)
to be compared beP = {p⃗1, p⃗2, . . . , p⃗n} and Q =
{q⃗1, q⃗2, . . . , q⃗n}, wherep⃗i and q⃗i are the coordinates of
the i-th Cα atoms ofP and Q, respectively. Then the
RMSD betweenP and Q is defined as the minimum
value of

DR,v⃗(P,Q) =

√√√√ 1
n

n∑
i=1

∥p⃗i − (R · q⃗i + v⃗)∥2

over all the possible rotation matricesR and trans-
lation vectors v⃗, where ∥ · ∥ denotes the norm. Let
RMSD(P,Q) denote the minimum value, and let
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R̂(P,Q) and ˆ⃗v(P,Q) denote theR and v⃗ that satisfy
DR,v⃗(P,Q) = RMSD(P,Q).

B. How to compute the RMSD

In this section, we briefly describe how to compute
the RMSD. LetR · X denote the structureX rotated
by the rotation matrixR. If the rotation matrixR is
fixed, DR,v⃗(P,Q) is known to be minimized when the
centroid ofR · Q is translated to the centroid ofP by
the translation vector⃗v, regardless of what the rotation
matrixR is. Hence, if bothP andQ are translated so that
their centroids are moved to the origin of the coordinates,
the RMSD problem is reduced to a problem of findingR
(i.e., R̂(P,Q)) that minimizesFR(P,Q) =

∑n
i=1 ∥p⃗i −

R · q⃗i∥2.
From now on, we consider that both structures have

been already translated so that both centroids are moved
to the origin of the coordinates. Then we can compute
R̂(P,Q) in linear time [1], [17], [18] as follows. Let
H =

∑n
i=1 p⃗i · q⃗i

t, where v⃗t means the transpose of
vectorv⃗. Clearly,H can be computed inO(n) time. Then
FR(P,Q) can be described as

∑n
i=1 (p⃗i

tp⃗i + q⃗i
tq⃗i) −

trace(R ·H), andtrace(RH) is maximized whenR =
V UT , whereUΛV is the singular value decomposition
(SVD) of H andAT means the transpose of matrixA.
ThusR̂(P,Q) can be obtained fromH in constant time,
as H is a 3 × 3 matrix and the SVD can be computed
in O(d3) time for a d × d matrix [13]. Note that there
are degenerate cases wheredet(V UT ) = −1, which
means thatV UT is a reflection matrix. See [1], [6]
for details to deal with the degenerate cases. We can
compute the RMSD value in linear time once we have
obtainedR̂(P,Q). In total, we can compute the RMSD
value inO(n) time.

Let S[i..j] denote the substructure ofS from the i-th
atom to thej-th atom (e.g., P[i..j] = {p⃗i, p⃗i+1, . . . , p⃗j}).
According to [26], the RMSD and corresponding super-
position between two substructuresP[i..j] and Q[i..j]
can be computed in constant time for anyi andj, after
linear-time preprocessing, as follows:RMSD(P[i..j],
Q[i..j]), R̂(P[i..j], Q[i..j]) and ˆ⃗v(P[i..j],Q[i..j]) can
be computed inO(1) time if we are given

∑j
k=i p⃗k,∑j

k=i p⃗k
tp⃗k,

∑j
k=i q⃗k,

∑j
k=i q⃗k

tq⃗k, and
∑j

k=i p⃗kq⃗k
t.

These values can be computed also in constant time, if
we compute the following values in advance:

∑ℓ
k=1 p⃗k,∑ℓ

k=1 p⃗k
tp⃗k,

∑ℓ
k=1 q⃗k,

∑ℓ
k=1 q⃗k

tq⃗k, and
∑ℓ

k=1 p⃗kq⃗k
t, for

all ℓ (1 ≤ ℓ ≤ n). It is easy to see that all of these values
can be computed inO(n) time in total. Thus we conclude
that the RMSD and corresponding superposition between
P[i..j], andQ[i..j] can be computed inO(1) time after
linear-time preprocessing.

III. RMSDH: A L INEAR-TIME COMPUTABLE

MEASURE FORHINGE DETECTION

A. Definition of the RMSDh

In this section, we consider a new measure to compare
two flexible protein 3-D structures that are very similar
except for one small hinge region. We consider that
the hinge region is so small that it can be considered
as only a single backbone atom.2 Note that there are
atoms other than theCα atoms on the backbone, and
the hinge can be located at any of them. Let the two
structures to be compared beP = {p⃗1, p⃗2, . . . , p⃗n} and
Q = {q⃗1, q⃗2, . . . , q⃗n}, and consider that the hinge is
located at a backbone atom between theℓ-th Cα atom
and the(ℓ+1)-th Cα atom, or at theℓ-th Cα atom. Then
P[1..ℓ] andQ[1..ℓ] should be similar to each other, and
P[ℓ+1..n] andQ[ℓ+1..n] should also be similar to each
other. Thus if the two rigid parts ofQ are rotated and
translated appropriately with different rotation matrices
and translation vectors,P and the transformedQ should
be very similar to each other, and consequently should
have a small RMSD value. It means that

Gℓ(P,Q) = min
R1,R2,v⃗1,v⃗2

√
1
n
{Kℓ

1(R1, v⃗1) + Kn
ℓ+1(R2, v⃗2)}

must be a very small value, where

Ky
x(R, v⃗) =

y∑
i=x

∥p⃗i − (R · q⃗i + v⃗)∥2.

Here,R1 andR2 are (possibly different) rotation matri-
ces and⃗v1 andv⃗2 are (also possibly different) translation
vectors. It can be used as the similarity measure between
P andQ, if the hinge is at or around theℓ-th atom. This
value is the same as the RMSD ifR1 = R2 and v⃗1 = v⃗2

when they are optimized.
But we do not know the actual hinge position in

most cases when we compare two structures. Hence, we
consider the minimum value ofGℓ(P,Q) over all the
possible hinge positionsℓ, i.e. min1≤ℓ<n Gℓ(P,Q), as
the measure to compare a pair of flexible structures with
one hinge. We call it the RMSDh (Root Mean Square
Deviation considering hinges), and letRMSDh(P,Q)
denote this value. Note that the RMSDh is always
smaller than or equal to the RMSD. Letℓ̂ denote the
ℓ that minimizesGℓ(P,Q). Then we can predict that
the hinge is located between thêℓ-th residue and the
(ℓ̂ + 1)-th residue.

The above optimized translations and rotations does
not consider any restrictions on the locations ofP [ℓ],

2We do not consider longer hinge regions. But it does not mean
that our algorithms cannot be applied to flexible proteins with longer
hinge regions.
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Q[ℓ], P [ℓ+1], andQ[ℓ+1], i.e. the distance betweenP [ℓ]
andP [ℓ+1] and that betweenQ[ℓ] andQ[ℓ+1] should be
fixed. But in the ideal case where the structuresP [1..ℓ]
andQ[1..ℓ] are all the same structure, and the structures
P [ℓ+1..n] andQ[ℓ+1..n] are also all the same structure,
we can ignore the restriction, as the above optimized
RMSDh value becomes zero. In practice, these fragments
structures should be very similar (almost the same) to
each other, and thus we think that there is no problem
in ignoring the restriction.

B. How to compute the RMSDh

The problem of computingRMSDh(P,Q) can be
reduced to the problem computing

min
1≤ℓ<n

Lℓ
1(P,Q) + Ln

ℓ+1(P,Q),

where

Ly
x(P,Q) = min

R,v

y∑
i=x

∥p⃗i − (R · q⃗i + v⃗)∥2.

Notice that Lj
i (P,Q) =

n·(RMSD(P[i..j],Q[i..j]))2, which means that we can
compute the RMSDh value by computing2n−2 RMSD
values,i.e., RMSD(P[1..ℓ],Q[1..ℓ]) andRMSD(P[ℓ+
1..n],Q[ℓ + 1..n]) for all ℓ (1 ≤ ℓ < n). According
to section II-B, the computation of each RMSD can be
done in constant time after linear-time preprocessing.
Hence, the RMSDh value can be computed inO(n)
time, including the preprocessing phase. Moreover, we
can detect the corresponding hinge position at the same
time.

IV. RMSDH(k): MORE FLEXIBLE MEASURES

A. Definition of the RMSDh(k)

In the previous section, we considered only one hinge
region, but many flexible protein structures are known
to have more than one hinge region. In this section,
we consider that the target structures havek hinges at
most, which means they can be divided intok + 1 rigid
fragments. Again, letP = {p⃗1, p⃗2, . . . , p⃗n} and Q =
{q⃗1, q⃗2, . . . , q⃗n} be the flexible structures to be com-
pared, and let the positions of the hinges beℓ1, ℓ2, . . . , ℓk.
To ease discussion, letℓ0 = 1 and ℓk+1 = n + 1. Then,
with discussion similar to section III-A, the value

Hℓ1,...,ℓk
(P,Q) = min

R0,...,Rk,v⃗0,...,v⃗k

√√√√√ 1
n

k∑
j=0

K
ℓj+1−1
ℓj

(Rj , v⃗j)

should be a very small value, whereKy
x(R, v⃗) denotes

the expression defined in section III-A,R0, R1, . . . , Rk

are possible rotation matrices, and⃗v0, v⃗1, . . . , v⃗k are
possible translation vectors.

But, as in section III-A, we do not know the actual
hinge positions in most cases. Thus we propose to use
the minimum value of the above expression over all the
possible sets ofk hinge positions{ℓ1, ℓ2, . . . , ℓk}, i.e.,

min
1≤ℓ1<ℓ2<···<ℓk≤n

Hℓ1,...,ℓk
(P,Q),

as the measure for comparing such flexible proteins. We
call it RMSDh(k), and letRMSDh(k)(P,Q) denote the
value. As in section III-A, the positionsℓ1, ℓ2, . . . , ℓk that
minimizes the above value can be used as the predicted
locations of the hinges. Note that the RMSDh(1) is the
same as the RMSDh. Note also that the RMSDh(k) is
always smaller than or equal to the RMSDh(k−1), for any
k, and that RMSDh(n−1) = 0 no matter how different
the proteins are.

B. How to Compute the RMSDh(k)

As in the case of computing the RMSDh, the problem
of computing the RMSDh(k) can be reduced to the
problem of computing

min
1≤ℓ1<ℓ2<···<ℓk≤n

k∑
i=0

L
ℓi+1−1
ℓi

(P,Q),

where Lj
i (P,Q) is the same expression as defined in

section III-B. There aren−1Ck possible sets ofk hinge
positions, which means that we might needO((k + 1) ·
n−1Ck) time or more if we naively compute it. But, in the
following, we propose an algorithm based on dynamic
programming (DP), which compute the RMSDh(k) in
O(kn2) time andO(n) space.

To compute the RMSDh(k), we consider the following
value:

Ii,r = min
1≤ℓ1<ℓ2<···<ℓr≤i

r∑
j=0

L
ℓj+1−1
ℓj

(P[1..i],Q[1..i]),

where we letℓ0 = 1 andℓr+1 = i+1 to ease discussion.
Then the RMSDh(k) is described as(In,k/n)

1
2 . Note that

Ii,r is defined only when0 ≤ r < i ≤ n. In caser =
0, it can be easily seen from the definition thatIi,0 =
Li

1(P,Q) for any i. In addition, the following equation
holds whenr ≥ 1:

Ii,r = min
r≤j<i

{Ij,r−1 + Li
j+1(P,Q)}.

The above equation represents a DP algorithm for
computing In,k and consequently the RMSDh(k) (i.e.,
(In,k/n)

1
2 ). During the DP procedure, we computeIn,r

for all r (1 ≤ r ≤ k), from which we can immediately
obtain the RMSDh(r) values (1 ≤ r ≤ k) too.
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Recall that theLj
i (P,Q) can be computed in con-

stant time after linear-time (O(n)) preprocessing (see
section III-B). Thus the valuesIi,0 for all i can be
computed inO(n) time in total. Moreover, in caser > 0,
the valueIi,r can also be computed inO(i− r) time by
using the values ofIj,r−1 (j < i). It means that the
overall computation time required for computingIn,k

(and consequently the RMSDh(k)) is O(kn2). The space
required for computing the RMSDh(k) is only O(n),
because we only need the information ofIj,r−1 values
(for all j such thatj < i) to compute theIi,r values for
any i.

To compute the positions of the corresponding hinges,
we can use the ordinary tracing back technique for DP
algorithms, without increasing the time complexity of the
overall algorithm. But the space requirement increases
to O(nk) space, if we do it naively by using a table of
O(nk) size for tracing back. It can be reduced toO(n)
space by using a divide-and-conquer technique similar to
the Hirschberg algorithm for sequence alignment [14], as
follows.

Let

Ji,r = min
i≤ℓ1<ℓ2<···<ℓr≤n

r∑
j=0

L
ℓj+1−1
ℓj

(P[i..n],Q[i..n]),

where we letℓ0 = i andℓr+1 = n+1 to ease discussion.
Ji,r can also be computed by DP, as the following
equation holds:

Ji,r = min
i≤j<n

{Lj
i (P,Q) + Jj+1,r−1}.

Moreover theIn,k can be described as follows,3 letting
k′ = ⌊k/2⌋ andk′′ = k − k′ − 1:

In,k = min
k′<i<n−k′′

Ii,k′ + Ji+1,k′′ .

The i that minimizes this value is the position of the
(k′ + 1)-th hinge. Let the position bep. To compute it,
we needO(kn2) time andO(n) space.

Similarly, we can next compute the position of the
(⌊k′/2⌋ + 1)-th hinge by computing the RMSDh(k′)

betweenP[1..p − 1] and Q[1..p − 1] in O(k′p2) time
and O(p) space. Moreover, we can also compute the
position of the(k′ +1+ ⌊k′′/2⌋)-th hinge by computing
the RMSDh(k

′′) betweenP[p + 1, n] and Q[p + 1, n]
in O(k′′(n− p)2) time andO(n− p) space. Notice that
k′p2+k′′(n−p)2 < kn2/2, andkn2+kn2/2+kn2/22+
· · · < 2kn2. It means that we can compute all the hinge
positions inO(kn2) time andO(n) space by repeating
the above until we obtain all of them.

3Once we get the In,k, we can immediately compute
the RMSDh(k) value, as was described before,i.e.,
RMSDh(k)(P,Q) = (In,k/n)

1
2 .

V. EXPERIMENTAL RESULTS

We tested our algorithms against the 14 pairs of pro-
teins shown in Table I, taken from the PDB database [2].
In the table, the RMSD column shows the RMSD
between two structures in each set. The top 12 pairs of
proteins in the table are flexible proteins. The adeno-
sylcobinamide kinase [27] in the set AK is known
to be a flexible protein with shearing movement. The
HIV-1 protease [22] in the set HIV is the major drug
target against the AIDS (acquired immunodeficiency
syndrome), whose flexibility is said to affect the effec-
tiveness of drugs. The lactate dehydrogenase (LDH) [12]
is known to be a flexible protein with very dynamic
movement,i.e., more than 10̊A. The other 9 flexible
protein sets are pairs of flexible proteins listed in the
Hinge Atlas database [11], which contains very accurate
annotations on hinge positions. As for the sets other than
the above 12 flexible proteins, the AT set consists of two
independently determined structures of the same protein
in the same state, and the MR set is a pair of unrelated
proteins.

Tables II and III show the experimental results against
the 12 flexible protein pairs. In the table, the ‘Our
results’ rows show our results of the computation of
the RMSDh(k) for 1 ≤ k ≤ 5, and the corresponding
hinge positions (by showing the fragments divided by
the predicted hinge positions). See section V-A for the
meaning of the mark ‘†’ in these rows. The ‘FlexProt’
rows show the results of the FlexProt program [25] with
the default parameter settings (i.e., 3.0Å is set to the
maximal RMSD between matched fragments, and 15 is
set to the minimal size of matched fragments), which
is one of the most widely used tools for detection of
hinge positions. The ‘RMSDh(k)’ column shows our
RMSDh(k) values for 5 differentks (k = 1, 2, . . . , 5).
The ‘Fragments divided by hinges’ column shows the
fragments divided by the predicted hinges (or annotated
hinges). In the column, ‘[x..y]’ denotes the fragment that
starts at thex-th residue and ends at they-th residue.
‘(rÅ)’ written after the fragment means that the RMSD
between the two fragments at the position isrÅ. Note
that ‘(rÅ)’ is omitted for the FlexProt results and the
annotations. The fragments that end at (or near to) the
annotated hinge positions are marked with ‘*’ (i.e., their
distance to the annotated position are at most 3 residues).

The ‘Annotation in ...’ rows and the ‘Hinge Atlas’ rows
show the protein pairs’ known annotations in literature
or the Hinge Atlas database. In the experiment for the set
AK, HIV, and LDH, we show the annotations given in
[27], [16] and [12], respectively. These annotations are
based on manual analysis on the structures. For other
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TABLE I

PROTEIN STRUCTURES TESTED IN OUR EXPERIMENTS.

Sets Proteins PDB IDs #residues RMSD (Å)
AK Adenosylcobinamide kinase 1CBU(B),1C9K(B) 180 3.1092
HIV HIV-1 protease 3HVP, 4HVP(A) 97 1.2450
LDH Lactate dehydrogenase (LDH) 1LDM, 6LDH 329 1.7886
BTL Bacteriophage T4 Lysozyme 149L, 1L53 164 1.8707
DPB DNA Polymerase beta 1BPD, 2BPG 324 10.3347
EPA Elastase of Pseudomonas Aeruginosa1EZM, 1U4G 298 1.2194
ENL Enolase 3ENL(A), 1EBG 436 1.4662
GB Glutamine Binding Protein 1GGG(A), 1WDN (residues: 2–221) 220 5.3380
LF Lactoferrin 1LFG, 1LFH 691 6.4285
LB LAO Binding Protein 2LAO, 1LST 238 4.6985
RB Ribose Binding Protein 1URP(A), 2DRI 271 4.0624
TC Troponin C 4TNC(A, residues: 3–157), 2TN4 155 3.7263
AT Asparatate transcarbamoylase 1RAB(A), 1RAC(A) 310 0.1714
MR Myoglobin / Rhodopsin 101M, 1AYR(A) (residues:1–154) 154 19.3841

datasets, we show the annotations in the Hinge Atlas
database. The Hinge Atlas annotations are made also
by manual annotation, but utilizing many state-of-the-art
hinge detection methods, such as the FlexProt.

A. Estimation of the Numbers of Hinges

In this section, we discuss how to estimate the number
of hinges in the given pair of protein structures, and
the accuracy of the method. In the tables II and III,
we show the RMSD value for each pair of fragments
divided by the predicted hinges.4 As these fragments
should be ‘rigid’ fragments, these RMSD values should
be very small. Thus we can predict the number of hinges
by finding the smallestk (k ≥ 1) such that all the
fragments have RMSDs smaller than some threshold.
In the experiments, we used1.5Å as the threshold. In
tables II and III, we marked the predicted number of
hinges with ‘†’ in the ‘Methods’ column of the ‘Our
results’ rows. In all the experiments except for the set
ENL, the predicted numbers of hinges were at most 3.
Note that it was7 in the experiment for the ENL set,
which is not shown in the table.

With the above method, we succeeded in predicting
the number of hinges correctly (i.e. same as the anno-
tations) for 9 of the 12 data sets,i.e., HIV, LDH, DPB,
EPA, GB, LF, LB, RB, and TC. On the other hand,
the FlexProt program with the default parameter settings
could predict them correctly only for 4 of the 12 sets,
i.e., AK, GB, LF and LB.

4Computation of these fragments’ RMSDs requires only additional
O(k) time, by using the technique described in section II-B.

TABLE IV

RMSD/RMSDH/RMSDH(k) OF SETSAT AND MR (IN Å).

Sets RMSD RMSDh RMSDh(2)

AT 0.1714 0.1672 0.1555
MR 19.3841 15.9145 13.4793
Sets RMSDh(3) RMSDh(4) RMSDh(5)

AT 0.1508 0.1430 0.1380
MR 10.7877 9.3194 8.3340

B. Correctness of the Detected Hinge Positions

As for the hinge positions, we succeeded in predicting
all the hinge positions correctly for 6 of the 12 sets,
that is, LDH, EPA, GB, LF, LB, and RB, by using the
estimated number of hinges described in the previous
section. Moreover, we could succeeded in predicting
some of the hinge positions correctly for other 3 sets
(HIV, BTL, and TC). Our prediction was different from
the annotations for the other 3 sets,i.e., AK, HIV, and
ENL. But even for these unsuccessful 3 sets, we can find
some of the hinge positions correctly, if we set some
different k.

On the other hand, the FlexProt (with the default
parameters) predicted all the hinge positions correctly
only for 1 of the 12 sets (i.e., AK). The FlexProt
predicted some of the hinge positions correctly for 4 sets
(i.e., DPB, GB, RB and TC). For the other 7 sets, the
FlexProt could not predict any correct hinge positions
with the default parameter settings.

C. Other experiments

We also computed the RMSD, RMSDh, and
RMSDh(k) values for two independently determined
structures of the same protein in the same state (i.e.,
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TABLE V

TIME (SEC) FOR COMPUTINGRMSDH(k) FOR ALL k (1 ≤ k < n).

Sets AK HIV LDH BTL DPB
Time (sec) 0.203 0.047 0.640 0.156 0.640

Sets EPA ENL GB LF LB
Time (sec) 0.531 1.234 0.313 3.516 0.344

Sets RB TC AT MR
Time (sec) 0.437 0.172 0.594 0.141

the AT set), which are shown in Table IV. Note that the
same set is used in [20] for a test on a pair of almost-the-
same proteins. Of course all the values are very small,
including the RMSD value. We consider that we do not
have to compute RMSDh/RMSDh(k) values if the RMSD
is very small like in this case.

In contrary, we compared two totally different struc-
tures in the set MR (i.e., a myoglobin and a rhodopsin is
compared). In this case, all the values are far larger than
those in any other experiments. These experiments show
that our measures are effective for discriminating flexible
protein pairs from other normal rigid protein pairs, unless
the two flexible proteins have a very similar structure.

D. Computation time

Table V shows the time for computing the RMSDh(k)

values and corresponding hinge positions for allk (1 ≤
k < n), using a single 3.2 GHz Pentium D processor
with 2 GB memory. It shows that the computation time
is very reasonable (most are less than a second), which is
faster than any other known hinge detection algorithms.
Note that the computation time is much smaller in case
k is smaller.

VI. CONCLUSIONS AND FUTURE WORK

We proposed two new measures for comparing two
flexible proteins, which can be very efficiently computed.
The first measure, RMSDh, can be computed in lin-
ear time, while the other measure, RMSDh(k) can be
computed inO(kn2) time, wherek is the number of
hinges, andn is the length of the structures. Moreover,
we can detect the hinge positions while we compute
the measures. Both of the measures are tested on actual
flexible proteins to demonstrate the accuracy and the
efficiency of our algorithms.

Some flexible proteins have large flexible regions. Our
measure considers only small flexible regions, and some
more flexible measure might be desired for structures
with larger flexible regions. Moreover, our algorithms
suppose that we know the correspondence between
residues of two proteins in advance, but we do not in
many cases. Thus, we should develop as future work

a flexible structure alignment algorithm that finds the
residue correspondence minimizing the RMSDh or the
RMSDh(k).

Not so many 3-D structures of flexible proteins are
solved today, but the number is now increasing. In
the future, there should be more sample structures for
every flexible protein, which means we should develop
multiple alignment algorithms for flexible proteins to
compare them simultaneously.
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TABLE II

RESULTS OF HINGE DETECTION(1/2). FRAGMENTS WHICH END NEAR AT THE ANNOTATED HINGE POSITIONS ARE MARKED WITH‘*’.

Sets Methods RMSDh(k) Fragments divided by hinges
k = 1 2.4417Å [1..52](4.47̊A), [53..180](0.51̊A)
k = 2 0.9773Å [1..34](1.00̊A)*, [35..51](1.85Å), [52..180](0.79)̊A)

Our
†k = 3 0.7467Å [1..34](1.00̊A)*, [35..47](1.44Å), [48..52](1.19̊A), [53..180](0.51̊A)

AK results k = 4 0.5386Å
[1..32](0.40̊A)*, [33..35](0.33Å), [36..47](0.77̊A), [48..52](1.19̊A),
[53..180](0.51̊A)

k = 5 0.4755Å
[1..32](0.40̊A)*, [33..35](0.33Å)*, [36..45](0.44Å), [46..50](0.55̊A),
[51..53](0.58̊A), [54..180](0.49̊A)

FlexProt – [1..36]*, [39..180]
Annotation in [27] – [1..34], [35..180]

k = 1 1.1064Å [1..33](0.64̊A)*, [34..97](1.28Å)
†k = 2 0.7267Å [1..44](0.78̊A)*, [45..56](0.71Å)*, [57..97](0.67Å)

Our
k = 3 0.6483Å [1..23](0.66̊A)*, [24..44](0.54Å)*, [45..56](0.71Å)*, [57..97](0.67Å)

HIV results k = 4 0.5795Å
[1..23](0.66̊A)*, [24..38](0.35Å)*, [39..53](0.73Å)*, [54..80](0.57Å),
[81..97](0.48̊A)

k = 5 0.5359Å
[1..8](0.26Å), [9..23](0.58̊A)*, [24..38](0.35Å)*, [39..53](0.73Å)*,
[54..80](0.57̊A), [81..97](0.48̊A)

FlexProt – — No hinge detected —
Annotation in [16] – [1..15], [25..34], [55..97] (i.e., [16..24] and [35..54] are flexible regions)

k = 1 1.6160Å [1..116](2.05̊A), [117..329](1.32̊A)
†k = 2 1.1436Å [1..97](0.42̊A)*, [98..109](1.07̊A)*, [110..329](1.35̊A)

Our
k = 3 0.8902Å [1..97](0.42̊A)*, [98..109](1.07̊A)*, [110..324](1.01̊A), [325..329](1.51̊A)

LDH results k = 4 0.7234Å
[1..97](0.42̊A)*, [98..109](1.07̊A)*, [110..305](0.80̊A), [306..324](0.45̊A),
[325..329](1.51̊A)

k = 5 0.6496Å
[1..96](0.406̊A)*, [97..109](0.92̊A)*, [110..121](0.45̊A), [122..305](0.72̊A),
[306..324](0.45̊A), [325..329](1.51̊A)

FlexProt – — No hinge detected —
Annotation in [12] – [1..97], [98..109], [110..329]

†k = 1 0.8614Å [1..74](1.08̊A), [75..164](0.62̊A)
k = 2 0.5334Å [1..11](0.48̊A)*, [12..75](0.41Å), [76..164](0.61̊A)

Our
k = 3 0.4684Å [1..11](0.48̊A)*, [12..73](0.39Å), [74..93](0.37̊A), [94..164](0.55̊A)

BTL results k = 4 0.4266Å
[1..11](0.48̊A)*, [12..73](0.39Å), [74..93](0.37̊A), [94..161](0.47̊A),
[162..164](0.32̊A)

k = 5 0.3820Å
[1..11](0.48̊A)*, [12..73](0.39Å), [74..93](0.37̊A), [94..130](0.32̊A),
[131..161](0.41̊A), [162..164](0.32̊A)

FlexProt – — No hinge detected —
Hinge Atlas – [1..12], [13..80], [81..167]

k = 1 1.8047Å [1..83](0.81̊A), [84..324](2.04̊A)
†k = 2 1.0460Å [1..83](0.81̊A), [84..252](1.15̊A), [253..324](1.02̊A)

Our
k = 3 0.8625Å [1..82](0.79̊A), [83..139](0.80̊A), [140..252](0.83̊A), [253..324](1.02̊A)

DPB results k = 4 0.8368Å
[1..82](0.79̊A), [83..139](0.80̊A), [140..252](0.83̊A), [253..299](1.03̊A),
[300..324](0.66̊A)

k = 5 0.8011Å
[1..82](0.79̊A), [83..139](0.80̊A), [140..252](0.83̊A), [253..291](0.72̊A),
[292..296](0.88̊A), [297..324](0.80̊A)

FlexProt – [9-88]*, [89-324]
Hinge Atlas – [1..88], [89..263], [264..324]

†k = 1 0.6392Å [1..133](0.80̊A)*, [134..298](0.47̊A)
k = 2 0.5612Å [1..83](0.39̊A), [84..133](0.96̊A)*, [134..298](0.47̊A)

Our
k = 3 0.5187Å [1..81](0.38̊A), [82..95](0.36̊A), [96..133](0.90̊A)*, [134..298](0.47̊A)

EPA results k = 4 0.4867Å
[1..78](0.38̊A), [79..98](0.57̊A), [99..115](0.31̊A), [116..132](0.89̊A)*,
[133..298](0.48̊A)

k = 5 0.4325Å
[1..78](0.38̊A), [79..98](0.57̊A), [99..114](0.24̊A), [115..119](0.16̊A),
[120..135](0.34̊A)*, [136..298](0.46̊A)

FlexProt – — No hinge detected —
Hinge Atlas – [1..134], [135..298]
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TABLE III

RESULTS OF HINGE DETECTION(2/2). FRAGMENTS WHICH END NEAR AT THE ANNOTATED HINGE POSITIONS ARE MARKED WITH‘*’.

Sets Methods RMSDh(k) Fragments divided by hinges
k = 1 1.1942Å [1..136](1.52̊A), [137..436](1.01̊A)
k = 2 1.0680Å [1..41](2.03̊A), [42..141](0.47̊A), [142..436](1.02̊A)

Our
k = 3 0.9053Å [1..36](0.29̊A), [37..41](2.27̊A), [42..141](0.47̊A), [142..436](1.02̊A)

ENL results k = 4 0.7724Å
[1..36](0.29̊A), [37..41](2.27̊A), [42..152](0.47̊A)*, [153..329](1.03̊A),
[330..436](0.40̊A)

k = 5 0.6612Å
[1..36](0.29̊A), [37..41](2.27̊A), [42..152](0.47̊A)*, [153..220](1.18̊A),
[221..340](0.49̊A), [341..436](0.37̊A)

FlexProt – — No hinge detected —
Hinge Atlas – [1..149], [150..317], [318..436]

k = 1 3.7358Å [1..85](0.56̊A)*, [86..220](4.75̊A)
†k = 2 0.9282Å [1..84](0.47̊A)*, [85..178](1.28̊A)*, [179..220](0.62̊A)

Our
k = 3 0.8057Å [1..85](0.56̊A)*, [86..105](2.01̊A), [106..178](0.52̊A)*, [179..220](0.62̊A)

GB results k = 4 0.6350Å
[1..84](0.47̊A)*, [85..97](0.50Å), [98..105](1.98̊A), [106..178](0.52̊A)*,
[179..220](0.62̊A)

k = 5 0.5381Å
[1..84](0.47̊A)*, [85..98](0.77Å), [99..101](0.25̊A), [102..106](0.55̊A),
[107..178](0.51̊A)*, [179..220](0.62̊A)

FlexProt – [5..87]*, [88..180], [181..220]
Hinge Atlas – [1..85], [86..176], [177..220]

k = 1 3.8646Å [1..248](6.23̊A), [249..691](1.26̊A)
†k = 2 1.1503Å [1..91](1.45̊A)*, [92..250](0.52̊A)*, [251..691](1.24̊A)

Our
k = 3 0.9290Å [1..91](1.45̊A)*, [92..250](0.52̊A)*, [251..332](0.48̊A), [333..691](0.98̊A)

LF results k = 4 0.7880Å
[1..3](0.315̊A), [4..91](0.52̊A)*, [92..250](0.52̊A)*, [251..332](0.48̊A),
[333..691](0.98̊A)

k = 5 0.7130Å
[1..3](0.31Å), [4..91](0.52̊A)*, [92..250](0.52̊A)*, [251..417](1.07̊A),
[418..422](1.62̊A), [423..691](0.54̊A)

FlexProt – [1..84], [85..244], [245..691]
Hinge Atlas – [1..90], [91..250], [251..691]

k = 1 3.1264Å [1..91](0.39̊A)*, [92..238](3.97̊A)
†k = 2 0.4734Å [1..90](0.32̊A)*, [91..191](0.63̊A)*, [192..238](0.31̊A)

Our
k = 3 0.4234Å [1..90](0.32̊A)*, [91..161](0.52̊A), [162..191](0.57̊A)*, [192..238](0.31̊A)

LB results k = 4 0.3858Å
[1..90](0.32̊A)*, [91..158](0.50̊A), [159..182](0.36̊A), [183..191](0.35̊A)*,
[192..238](0.31̊A)

k = 5 0.3469Å
[1..90](0.32̊A)*, [91..112](0.47̊A), [113..158](0.35̊A), [159..182](0.36̊A),
[183..191](0.35̊A)*, [192..238](0.31̊A)

FlexProt – [1..83], [84..176], [177..238]
Hinge Atlas – [1..90], [91..192], [193..238]

k = 1 1.9967Å [1..103](0.52̊A)*, [104..271](2.50̊A)
†k = 2 0.5462Å [1..102](0.50̊A)*, [103..234](0.41̊A)*, [235..271](0.96̊A)

Our
k = 3 0.4505Å [1..102](0.50̊A)*, [103..233](0.40̊A)*, [234..262](0.42̊A), [263..271](0.61̊A)

RB results k = 4 0.3950Å
[1..34](0.29̊A), [35..102](0.38̊A)*, [103..233](0.40̊A)*, [234..262](0.42̊A),
[263..271](0.61̊A)

k = 5 0.3640Å
[1..34](0.29̊A), [35..102](0.38̊A)*, [103..152](0.30̊A), [153..234](0.36̊A)*,
[235..262](0.42̊A), [263..271](0.61̊A)

FlexProt – [1..100]*, [101..271]
Hinge Atlas – [1..103], [104..235], [236..265]

k = 1 3.1267Å [1..58](3.98̊A), [59..155](2.50̊A)
k = 2 1.6408Å [1..34](0.97̊A)*, [35..70](1.87Å), [71..155](1.75̊A)

Our
†k = 3 1.2040Å [1..36](1.22̊A)*, [37..66](1.30Å), [67..107](1.10̊A), [108..155](1.22̊A)

TC results k = 4 1.0665Å
[1..36](1.22̊A)*, [37..61](0.88Å)*, [62..69](0.69Å), [70..104](0.78̊A)*,
[105..155](1.23̊A)

k = 5 0.9042Å
[1..36](1.22̊A)*, [37..61](0.88Å)*, [62..69](0.69Å), [70..104](0.78̊A)*,
[105..135](0.93̊A), [136..155](0.27̊A)

FlexProt – [1..34]*, [35..66], [67..155]
Hinge Atlas – [1..35], [36..62], [63..101], [102..155]


