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Computer-aided analysis of whole slide images (WSIs) has advanced rapidly with the emer-
gence of multi-modal pathology foundation models. In this study, we propose a weakly
supervised neuron selection approach to extract disentangled representations from CLIP-
derived pathology foundation models, leveraging the interpretability of sparse autoencoders.
Specifically, neurons are ordered and selected using whole-slide level labels within a multiple
instance learning (MIL) framework. We investigate the impact of different pre-trained image
embeddings derived from general and pathology images and demonstrate that a selected
single neuron can effectively enable patch-level phenotype identification. Experiments on the
Camelyon16 and PANDA datasets demonstrate both the effectiveness and explainability of
the proposed method, as well as its generalization ability for tumor patch identification.
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1. Introduction

Whole-slide images (WSIs)—gigapixel digital scans of histopathological slides—have become
central to the digitization of diagnostic pathology. They are now routinely used to assist pathol-
ogists with tumor grading, biomarker quantification, and prognostic risk stratification. Owing
to their cellular-level resolution, WSIs have the potential to reduce inter-observer variability
and reveal subtle spatial patterns that are difficult to discern by eye. However, these advan-
tages come with significant technical challenges. A single WSI can exceed 100,000 × 100,000
pixels, making näıve end-to-end model training computationally infeasible. Additionally, tissue
appearance varies widely across scanners, laboratories, and staining protocols, while diagnos-
tically relevant structures are often sparse and heterogeneous. Although slide-level labels (e.g.,
“tumor present”) are relatively easy to acquire, generating detailed patch-wise or pixel-wise
annotations is labor-intensive and costly, resulting in a severe supervision bottleneck.

To address the challenges of weak supervision and extreme resolution, most modern com-
putational pathology pipelines adopt a multiple-instance learning (MIL)1 framework. In this
paradigm, each slide is divided into hundreds or thousands of tiles (also referred to as patches
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throughout the text). Each tile is encoded into a feature vector using a representation network,
and the resulting embeddings are aggregated via a pooling operator to produce a slide-level
prediction trained using only global labels. For tile-level representation, early MIL approaches
used generic convolutional neural networks pretrained on natural image datasets such as Ima-
geNet2,3 (e.g., ResNet4). More recent methods have shifted toward domain-specific pathology
foundation models, such as UNI,5 a self-supervised vision transformer trained on over 100
million tiles from more than 100,000 WSIs, and GigaPath,6 which scales pretraining to over
one billion tiles to capture gigapixel context. In parallel, CLIP-based vision-language models
(e.g., CONCH7) align pathology images with textual descriptions to produce semantically rich
embeddings that support zero-shot phenotype querying via natural language. For bag-level ag-
gregation, a variety of strategies have been developed, each influencing slide-level performance
differently. These include simple pooling methods (e.g., max and mean), attention-based pool-
ing, gated attention mechanisms, and more expressive set-based functions such as Deep Sets
or Transformer-style pooling. Both the choice of representation and the method of aggregation
play critical roles in the effectiveness and generalizability of MIL-based WSI models.

While these methods have demonstrated strong slide-level performance, patch-level inter-
pretability is increasingly important for clinical translation. MIL inherently provides coarse lo-
calization of discriminative regions by associating predictions with patch-level features. Among
existing approaches, the type of method using attention-based aggregator with MIL, such as
ABMIL8 and CLAM,9 has become a popular method due to its ability to assign learnable
weights to individual tiles, highlighting regions most influential to the final prediction. This
enables the generation of attention heatmaps without requiring dense annotations. However,
a key limitation of attention-based aggregator is that attention weights are normalized within
each slide, making them non-comparable across different WSIs. This restricts their utility in
standardized patch-level phenotype identification and limits population-scale interpretabil-
ity. Moreover, the attention mechanism typically operates over entangled high-dimensional
representations, which are difficult to interpret biologically.

To overcome these limitations, we draw inspiration from recent advances in model inter-
pretability using sparse autoencoders (SAEs).10 Recently introduced for dissecting representa-
tions in large language models (LLMs)11 and protein language models (PLMs),12 SAEs project
dense embeddings into sparse, overcomplete spaces by enforcing sparsity constraints during
training. Remarkably, many individual neurons in the SAE bottleneck correspond to monose-
mantic units, each selectively activating for specific, semantically coherent concepts—such as
a functional motif in a protein sequence or a syntactic role in text. These properties make
SAEs powerful tools for understanding and manipulating the internal representations of large
foundation models.

Building on SAE for embeddings of the pathology foundation model, we propose a novel
framework for patch-level phenotype identification via weakly supervised neuron selection.
Specifically, we train an SAE on CLIP-like pathology embeddings and identify single neurons
whose activation patterns correlate with slide-level labels within the MIL paradigm. These
neurons represent disentangled, semantically meaningful features that are both predictive of
slide-level outcomes and spatially localizable at the patch level, thus enabling interpretable



phenotype annotation without requiring dense supervision. We conducted experiments on
the Camelyon1613 and PANDA14 datasets, and the results demonstrate that the proposed
approach achieves competitive performance in tumor patch identification while offering inter-
pretable and generalizable spatial phenotyping.

2. Methods

Figure 1. Overall pipeline of the proposed SAE-1N method. (a) SAE applied for different em-
beddings of patch images. (b) Neuron selection method for SAE disentangled neurons with weak
supervision from the whole-slide labels. (c) MIL pipelines for the whole-slide level classification and
patch-level classification with a selected neuron.

An overview of our proposed method SAE-1N is illustrated in Figure 1. SAE-1N denotes
the single-neuron selection strategy based on disentangled neurons derived from a sparse
autoencoder (SAE). We begin by applying an SAE to disentangle latent representations from
patch-level embeddings extracted using a pretrained pathology foundation model. Each latent
neuron is then evaluated for its capacity to support whole-slide phenotype classification within
a multiple instance learning (MIL) framework. To identify the most informative neurons, we
assess their discriminative power between phenotype classes using statistical testing, enabling
principled neuron ranking and selection. The top-ranked neurons are subsequently employed
for downstream tasks, such as slide- and patch-level phenotype prediction.

2.1. Sparse Autoencoder for Disentangled Representation

Sparse autoencoders (SAEs) have emerged as a powerful framework for disentangling super-
posed representations in high-dimensional neural embeddings. By learning sparse and over-
complete latent codes, SAEs promote the emergence of monosemantic units—individual neu-
rons that consistently correspond to human-interpretable concepts. This property has been



successfully leveraged in mechanistic interpretability studies of large language models,11 pro-
tein language models,12 and structure–function models such as Evo2,15 where SAEs have been
shown to recover latent dimensions aligned with semantic, biochemical, or structural factors
from otherwise entangled activations.

The model architecture of SAE follows the conventional encoder–decoder design of autoen-
coders but employs an overcomplete latent space, where the number of latent units substan-
tially exceeds the input dimensionality. For learning sparse and overcomplete latent codes,
we adopt the BatchTopK Sparse Autoencoder (SAE-BatchTopK),16 an extension of SAE-
TopK.17 SAE-TopK constrains each input to activate exactly k latent units, which improves
interpretability but imposes a fixed sparsity level per sample. SAE-BatchTopK generalizes
this idea by enforcing the sparsity constraint across a mini-batch, thereby encouraging fea-
ture reuse, allowing per-sample variability, and maintaining consistent average sparsity during
training. In practice, this enables simpler inputs to be represented with fewer active neurons,
while more complex inputs naturally recruit a larger subset, yielding more flexible and efficient
representations.

SAE-BatchTopK was trained to minimize a loss consisting of a reconstruction term and
an auxiliary penalty that discourages persistent neuron inactivity. Given a batch of B inputs
{xi}Bi=1 of size D, the total loss is defined as L = Lrecon+Laux, where Lrecon = 1

BD

∑B
i=1 ∥xi− x̂i∥22

is the reconstruction loss, and Laux = λaux

BD

∑B
i=1 ∥

∑
j∈D wjhi,j − (xi − x̂i)∥22 is the auxiliary loss

to avoid dead latents. Here, hi = Wencxi + benc is the latent activation, h̃i = BatchTopK(hi)

the sparsified vector, x̂i = Wdech̃i + bdec the reconstruction, wj the j-th column from the
decoding weights Wdec, and D indexes latent units inactive for ninactive = 5 consecutive batches.
As the default setting, training was conducted per dataset for 100 epochs using the Adam
optimizer (lr = 10−3, β1 = 0.9, β2 = 0.99), with a batch size of 4096 and gradient norm clipping
at 105. Decoder weights were re-normalized after each update, and the checkpoint with the
lowest validation loss was selected for downstream analysis. Complete configuration details are
available in the supplementary material. In the following sections, SAE and SAE-BatchTopK
are used interchangeably.

2.2. Pretrained Pathology Models for Patch Embedding

The emergence of large-scale foundation models has significantly reshaped the landscape of
computational pathology. Early approaches commonly relied on convolutional neural net-
works (CNNs) pretrained on natural image datasets such as ImageNet,2 with architectures
like ResNet-504 serving as generic feature extractors for histopathology patches. While these
models provided a strong starting point for weakly supervised learning frameworks such as
multiple-instance learning (MIL), their limited domain specificity constrained performance
on complex pathology tasks. Recent advances, such as CONCH (CONtrastive learning from
Captions for Histopathology)7 and UNI,18 have demonstrated that representations learned
directly from large-scale pathology data can generalize more effectively across diverse diag-
nostic settings. These models, typically built upon Vision Transformer backbones and trained
using multimodal contrastive or self-supervised objectives, yield domain-specialized embed-
dings that substantially improve downstream WSI-level classification. However, the result-
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ing feature spaces are increasingly high-dimensional and entangled. Despite their predic-
tive strength, these embeddings remain difficult to interpret, presenting a growing perfor-
mance–interpretability trade-off that limits clinical transparency.

To explore the internal structure and interpretability of high-dimensional embeddings from
pathology foundation models, we analyze patch-level features extracted from three representa-
tive pretrained encoders. Whole-slide images (WSIs) are first segmented into non-overlapping
patches of size 256 × 256 at a resolution of 0.5µm/pixel using the CLAM framework.9 The
following models are used to generate patch-level embeddings: (1) ResNet-50,4 pretrained on
ImageNet,2 as a conventional convolutional baseline, producing 1024-dimensional features; (2)
UNI,18 a self-supervised Vision Transformer trained on over 100 million image patches from
diagnostic slides using a DINOv2-style distillation framework,19 yielding 1024-dimensional em-
beddings optimized for general-purpose tissue representation; and (3) CONCH,7 a CLIP-style
foundation model built on a CoCa architecture,20 trained on 1.17 million image–caption pairs
to align histopathology patches with free-text descriptions, producing 512-dimensional seman-
tically enriched embeddings. These diverse encoders reflect the spectrum of representation
learning strategies in computational pathology, ranging from natural image transfer learn-
ing to large-scale self-supervised and multimodal pretraining. We applied SAE-BatchTopK
to each set of patch embeddings to assess whether sparse, monosemantic structure could be
recovered from these dense representations. We paid particular attention to CONCH, as its
multimodal alignment provides a compelling test case for evaluating interpretability through
disentanglement.

2.3. Disentangled Neuron Explainability and Neuron-phenotype
Association

For identifying the potential meaning of the neurons disentangled by SAEs, prior work has
explored various strategies across domains such as language modeling and computational
pathology. In the context of large language models (LLMs), mechanistic interpretability studies
utilize sparse autoencoders in combination with prompt-based querying to associate individ-
ual neurons with semantic functions, often by inspecting example activations.11 In pathology,
ProtoMIL21 introduces an end-to-end explainable multiple-instance learning (MIL) framework
that first trains a sparse autoencoder to extract high-level, human-interpretable concepts from
patch-level embeddings. These concepts are then used for slide-level classification. Crucially,
ProtoMIL supports human-in-the-loop interpretability by enabling domain experts to man-
ually inspect and disable irrelevant or spurious concepts, thereby aligning model predictions
more closely with clinical reasoning.

In this work, we propose a weakly supervised strategy to associate whole-slide phenotype
labels with individual patch-level neurons disentangled by the sparse autoencoder. Analogous
to how neuron activations are profiled in large language models (LLMs) to capture shared
input semantics, our approach treats the slide-level supervision as an indirect indicator of
neuron selectivity. However, unlike LLM-based methods that rely on coarse approximations
of neuron meaning or manual annotation, our method directly links each neuron to a specific
whole-slide label. This precise supervision enables the identification of neurons that are both



semantically aligned and highly discriminative, supporting downstream applications such as
patch-level phenotype annotation with improved interpretability.

We develop a neuron selection framework that identifies SAE neurons associated with
whole-slide phenotype labels. Taking Camelyon16 as an example, where WSIs are labeled as
tumor-positive or tumor-negative at the whole-slide level, we leverage patch-level embeddings
from pretrained encoders and link them to slide-level signals through statistical inference.
This enables explanation at the neuron level without requiring dense annotations or human-
in-the-loop labeling. After training SAE-BatchTopK, we compute each neuron’s slide-level
activations by max-pooling across all patches Pi from slide i: ai,j = maxp∈Pi

hp,j, where hp,j is
the activation of neuron j for patch p. Slides are grouped by phenotype into tumor-positive
(P+) and tumor-negative (P−) sets based on slide-level labels. To assess neuron–phenotype
association, we apply Welch’s t-test to compare activation distributions:

tj =
ā+j − ā−j√
s2+,j

|P+| +
s2−,j

|P−|

, (1)

where ā±j and s2±,j denote the mean and variance of slide-level activations across slides in
each phenotype. Neurons are then ranked by statistical significance (i.e., p-values), and top-
ranked units are selected as interpretable detectors for downstream patch-level phenotype
identification. In SAE-1N, only the top-1 neuron is selected for use.

This approach links sparse neuron activations to weak supervisory signals, aligning tumor-
associated neurons with localized high-activation patterns. By isolating individual units asso-
ciated with disease states, this method provides a transparent mechanism for tracing WSI-level
predictions back to single, interpretable features, thereby enhancing explainability while in-
curring only a reduced compromise in predictive performance.

3. Results

We evaluated the proposed method on two benchmark whole-slide image datasets: Came-
lyon1613 and PANDA.14 The Camelyon16 dataset is a widely used benchmark for evaluating
algorithms in the automated detection of breast cancer metastases in lymph node whole-slide
images. It comprises a total of 399 WSIs, including 270 training slides sourced from two
pathology centers and 129 test slides. The dataset provides both slide-level labels and de-
tailed pixel-level annotations of tumor regions. During training, only whole-slide labels were
used in a weakly supervised manner. For evaluation, however, we additionally incorporated
patch-level and pixel-level annotations to assess model performance. We conducted five-fold
stratified cross-validation on the Camelyon16 dataset for slide-level metastasis classification.

The PANDA (Prostate cANcer graDe Assessment) dataset is a large-scale benchmark com-
prising more than 10,000 prostate WSIs collected from two institutions: Radboud University
Medical Center (Radboud) and Karolinska Institutet (Karolinska). The Radboud data contain
fine-grained, gland-centric annotations that distinguish stroma from epithelium, whereas the
Karolinska data provide region-level masks in which both benign and cancer regions include
stromal and epithelial tissue. For slide-level cancer detection, we reformulated the ISUP grades
such that Grade Group 0 was considered normal, whereas Grade Groups 1–5 were considered



tumors. For the patch-level segmentation task, categories 3–5 in Radboud data and category 2
in Karolinska data were treated as tumor, while categories 0–2 in Radboud data and categories
0–1 in Karolinska data were treated as non-tumor. Owing to its larger scale relative to Came-
lyon16, we performed experiments under both mixed-institution and independent-institution
splits. In each setting, the data were randomly partitioned into training, validation, and test
sets following an 80/10/10 ratio.

3.1. SAE enables disentanglement of superposed features in neural
representations

Figure 2. Correlation matrices of latent neuron activations before and after applying the SAE to
CONCH embeddings on the Camelyon16 validation set. The left panel shows the correlation matrix
(512× 512) of the individual units in the original CONCH embeddings. The right panel displays the
correlation matrix (2048× 2048) of the neurons in the SAE-transformed representations of the same
embeddings.

Figure 2 presents the Pearson correlation matrices of neuron activations before and af-
ter applying the SAE to CONCH embeddings on the Camelyon16 validation set. (In the left
panel, each unit in the original CONCH embedding is treated as a neuron.) Each neuron is
represented by its activation values across all samples. After applying the SAE, the corre-
lation values at off-diagonal positions generally decrease, indicating the effectiveness of the
disentanglement achieved by the SAE.

3.2. Benchmarking Multiple Instance Learning Models with Diverse
Embeddings and Aggregation Methods

To benchmark performance, we evaluated multiple MIL models using various pretrained em-
beddings and aggregation strategies on the Camelyon16 data, including MaxMIL, MeanMIL,
ABMIL,8 CLAM,9 TransMIL,22 and MambaMIL.23 MaxMIL and MeanMIL are used as base-
lines. ABMIL introduces a trainable soft attention mechanism that assigns adaptive weights to
individual instances, enabling the model to focus on diverse discriminative regions while main-
taining interpretability. CLAM (single- or multi-branch) extends ABMIL with class-specific
attention and feature-space clustering regularization.TransMIL incorporates transformers to
model long-range spatial dependencies among patches, and MambaMIL leverages a state-



space sequence model to efficiently capture global context across large bags of instances. For
patch-level image embeddings, we evaluate three widely used pretrained encoders: ResNet-50,
trained on natural images from ImageNet; CONCH, a CLIP-style model pretrained on paired
pathology images and text captions; and UNI, a self-supervised Vision Transformer trained
on a large-scale corpus of diagnostic whole-slide pathology images.

Figure 3. Whole-slide level performance of different MIL models using various pretrained embed-
dings (ResNet-50, CONCH, and UNI) on the Camelyon16 dataset. Area Under the Curve (AUC)
scores are reported as the primary performance metric. Accuracy results are provided in the supple-
mentary material.

As illustrated in Figure 3, pathology-specific pretrained encoders (CONCH and UNI) con-
sistently outperform the general-purpose ResNet-50 encoder across all multiple instance learn-
ing (MIL) models on the Camelyon16 dataset. For instance, using ABMIL, the UNI encoder
achieves the highest mean AUC, followed closely by CONCH. In contrast, ResNet-50 yields
the lowest performance with the widest interquartile ranges, indicating greater variability and
less robust feature extraction. These results underscore the necessity of domain-specific pre-
training: encoders trained on large-scale histopathology datasets capture tissue-relevant cues
that are absent in models pretrained on natural images like ImageNet. This observation also
aligns with findings reported for pathology-based embeddings in survival analysis.24

Across all three encoders, MeanMIL consistently produced the weakest performance. This
limitation is particularly pronounced in the Camelyon16 dataset, where tumor regions occupy
only a small fraction of each WSI—causing average pooling to dilute the discriminative signal
from informative patches. In contrast, MaxMIL emerges as a strong baseline, particularly when
paired with a high-quality encoder. For example, the UNI encoder combined with MaxMIL
achieved median AUC and accuracy scores of 0.9988 and 0.9752, respectively. Attention-based
models such as ABMIL, CLAM-SB, and CLAM-MB, as well as transformer-based models like
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TransMIL and MambaMIL, generally matched or slightly outperformed MaxMIL approaches.
Among them, MambaMIL exhibited the most consistent performance across encoders, suggest-
ing that global sequence modeling further enhances feature aggregation. Therefore, the quality
of pretrained embeddings is a dominant factor in WSI-level classification performance, and
while architectural innovations in MIL can offer marginal gains, better encoders can elevate
simple pooling strategies to near-optimal performance.

3.3. Phenotype Discrimination with SAE-1N on different Embeddings

Figure 4. Violin plots depicting activation distributions of the top-selected SAE neurons for each
encoder (ResNet-50, CONCH, and UNI). Activations are grouped according to patch-labels (“Nor-
mal” and “Tumor”), derived from pixel-level annotations in Camelyon16, where patches containing
≥ 20% annotated tumor regions are labeled as “Tumor”.

We evaluated the effectiveness of the proposed method across different embedding types
using pixel-level annotations. Patch-level labels (“Normal” and “Tumor”) were derived from
the Camelyon16 training set, where patches containing ≥ 20% annotated tumor regions were
labeled as “Tumor”. To assess the discriminative power of the selected neuron, we grouped
patches by their assigned labels and examined the activation values of the selected neuron
within each group. As shown in Figure 4, SAE-1N using the CONCH embedding exhibits
a clear distinction between tumor and normal patches, whereas SAE-1N applied to ResNet-
50 and UNI embeddings does not demonstrate such separation. Since UNI embeddings are
also pre-trained on pathology images, one possible explanation for the stronger discriminative
capacity of CONCH embeddings is their use of contrastive learning between pathology images
and textual descriptions. This cross-modal alignment may coarsely encode phenotype-relevant
information into the embeddings, enabling SAE-1N to isolate disentangled neurons that are
more effective for phenotype discrimination.

3.4. Comparison of SAE-1N and Attention-Based Methods for
Patch-Level Phenotype Identification

We further compared the performance of SAE-1N with attention-based MIL models, including
ABMIL, CLAM-SB, CLAM-MB, and TransMIL, where attention scores were used empirically



to infer patch-level predictions. For the original CONCH embeddings, we leveraged the model’s
zero-shot capability within a contrastive learning framework. Text embeddings were generated
using CONCH’s text encoder with the prompt “An image of metastatic breast carcinoma in
a lymph node” for Camelyon16 and “An image of prostate cancer” for the PANDA dataset.
Cosine similarity between this text embedding and each patch image embedding was then
computed to produce a heatmap. Following prior work,25 prediction thresholds for the above
methods were determined using the validation set, guided by patch-level annotations to opti-
mize classification performance.

Table 1. Comparison of spatial overlap performance on the Camelyon16 and
PANDA datasets. For Camelyon16, results are reported as mean Dice coefficients
with standard deviations obtained from five-fold cross-validation. For PANDA, Dice
coefficients are provided for the combined Radboud and Karolinska (R&K) set, as
well as for the Radboud and Karolinska subsets individually.

Method Camelyon16 PANDA
R&K Radboud Karolinska

Zero-shot (CONCH) 0.1612 (± 0.0107) 0.5361 0.5969 0.4990
ABMIL 0.5146 (± 0.0482) 0.5606 0.6198 0.5017

CLAM-SB 0.4785 (± 0.0630) 0.5563 0.5822 0.4767
CLAM-MB 0.5551 (± 0.0208) 0.5781 0.5596 0.4945
TransMIL 0.0950 (± 0.0269) 0.4566 0.4443 0.4549
SAE-1N 0.6135 (± 0.0309) 0.5705 0.6375 0.5129

The performance results are presented in Table 1. On Camelyon16, SAE-1N achieves the
mean Dice score of 0.6135, outperforming attention-based MIL methods such as ABMIL
(0.5146), CLAM-SB (0.4785), and CLAM-MB (0.5551). On the PANDA dataset, SAE-1N also
performs competitively: it achieves 0.5705 on the combined Radboud & Karolinska (R&K)
split, surpassing ABMIL (0.5606) and CLAM-SB (0.5563), and achieves the best score on Rad-
boud (0.6375), while obtaining 0.5129 on Karolinska. The zero-shot method exhibits strong
sensitivity to text prompt design. Its performance is relatively lower on Camelyon16, and
it further decreases to 0.0942 when the prompt is changed to “An image of tumor”. Over-
all, SAE-1N demonstrates the effectiveness of leveraging a single selected neuron to target
epithelial regions in WSIs for patch-level phenotype identification.

3.5. Interpretable Phenotype Visualization Using SAE-1N

We visualized the activation values of the selected neuron from SAE-1N to highlight
phenotype-relevant regions. Three representative whole-slide images from the Camelyon16
test set were selected, each containing tumors of different sizes (small, medium, and large).
For the PANDA dataset, one example was randomly selected from Radboud and one from
Karolinska. The activation maps from SAE-1N were compared with the attention scores pro-
duced by the ABMIL model.

As shown in Figure 5, attention-based methods such as ABMIL often highlight only a
subset of the tumor region, even in slides where the tumor occupies a large area. This limitation



Figure 5. Visualization results from SAE-1N and ABMIL. From top to bottom: the ground-
truth annotation, the activation heatmap of the selected SAE neuron (SAE-1N), and the atten-
tion map generated by ABMIL. (a) Camelyon16: From left to right, three cases with different tu-
mor sizes (small: test 122, medium: test 094, and large: test 114). (b) PANDA: From left to right,
two cases from the PANDA dataset (Radboud: 3424fa4daa40e0bb944a1f579ca895ca, and Karolinska:
4fc84c3c665c970865284b352e2134e3). The SAE-1N visualizations for PANDA were obtained from
the model trained on the combined Radboud and Karolinska (R&K) splits.

arises because, in slide-level classification tasks, a small number of high-attention patches is
often sufficient for accurate prediction, even if these patches do not comprehensively represent
the entire tumor area. Consequently, conventional MIL classification metrics may overlook such
incomplete tumor coverage. Moreover, attention scores reflect regions that contribute most to
the model’s prediction but do not necessarily correspond to the actual presence of tumor
tissue. In contrast, SAE-1N activations show a direct and statistically validated association
with tumor regions, achieved through the weakly supervised selection of a neuron linked to
the whole-slide–level phenotype.

Unlike attention scores computed via Softmax, which are relative within each slide, the
activation value of the selected SAE neuron is defined on an absolute scale based on the
training set. This enables consistent evaluation across samples and supports a more accessible
visualization strategy for whole-slide image analysis. By relying on a single neuron, SAE-1N
offers a simple yet transparent approach for tumor localization in computational pathology.



4. Discussion

Our work diverges from both Le et al.26 and ProtoMIL21 in three key respects: supervision,
interpretability granularity, and the usage of sparse autoencoders (SAEs). Le et al. demon-
strated that unsupervised SAE training on pathology embeddings can uncover monosemantic
latent units correlated with cell types. However, their work does not connect latent features
to explicit diagnostic tasks. In contrast, our method introduces weak slide-level phenotype
supervision within an MIL framework to select individual SAE neurons that are directly
predictive of tumor presence. This links each neuron to patch-level phenotype localization,
moving beyond unsupervised discovery into task-specific interpretability. ProtoMIL applies
SAE to extract human-interpretable “concepts” from embeddings, which are then used in an
inherently interpretable MIL classification pipeline. It further allows pathologists to intervene
by disabling spurious concepts. While similar in its use of SAE-derived concepts, our work
focuses on interpretable neuron selection rather than prototype aggregation, and critically
evaluates performance across different pretrained embeddings—especially CLIP-style models
like CONCH. We target single-neuron explainability and patch-level phenotype detection,
rather than slide-level prototype-based interpretability. Thus, our method complements these
works by emphasizing neuron-level transparency, enabling more precise, localized explanations
tied to clinical phenotypes.

The advantage of using a single-neuron sparse autoencoder (SAE) as the input feature
lies in its high interpretability: a single neuron is directly linked to the final prediction. For
instance, in the Camelyon16 classification task that distinguishes tumor from normal tissue,
the selected neuron can be clearly attributed to either tumor or normal regions. This makes
it a highly intuitive and interpretable marker for visualization. Although this study primarily
evaluates the proposed method using the Camelyon16 and PANDA datasets, the approach is
not limited to phenotypes such as tumor versus normal. The proposed method can be extended
to other phenotype types as well. On the other hand, the current method has primarily been
developed for identifying two phenotypes. For multiple phenotypes, the neuron selection strat-
egy based on whole-slide supervision could be extended, for example, by employing Welch’s
ANOVA. We plan to explore these extensions as part of future work.

5. Conclusion

In this work, we propose a novel approach that leverages a sparse autoencoder to learn disen-
tangled representations from CLIP-based pathology foundation models. We further introduce
a statistically grounded weakly supervised method for selecting phenotype-associated neurons
for downstream tasks. Our results demonstrate that the proposed method serves as a simple
and interpretable indicator for identifying patch-level phenotypes. Experiments on the Came-
lyon16 and PANDA datasets also show that the proposed SAE-1N model achieves competitive
performance on the patch-level annotation task.
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